Two Generalizations of Dual-Hyperbolic Balancing Numbers

In this paper, we study two generalizations of dual-hyperbolic balancing numbers: dual-hyperbolic Horadam numbers and dual-hyperbolic <i>k</i>-balancing numbers. We give Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity for them.

Bibliographic Details
Main Authors: Dorota Bród, Anetta Szynal-Liana, Iwona Włoch
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/11/1866
_version_ 1797547973108826112
author Dorota Bród
Anetta Szynal-Liana
Iwona Włoch
author_facet Dorota Bród
Anetta Szynal-Liana
Iwona Włoch
author_sort Dorota Bród
collection DOAJ
description In this paper, we study two generalizations of dual-hyperbolic balancing numbers: dual-hyperbolic Horadam numbers and dual-hyperbolic <i>k</i>-balancing numbers. We give Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity for them.
first_indexed 2024-03-10T14:52:45Z
format Article
id doaj.art-4c390f928dc64dbcaf95d16d0544e07a
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T14:52:45Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-4c390f928dc64dbcaf95d16d0544e07a2023-11-20T20:51:38ZengMDPI AGSymmetry2073-89942020-11-011211186610.3390/sym12111866Two Generalizations of Dual-Hyperbolic Balancing NumbersDorota Bród0Anetta Szynal-Liana1Iwona Włoch2The Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, PolandThe Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, PolandThe Faculty of Mathematics and Applied Physics, Rzeszow University of Technology, al. Powstańców Warszawy 12, 35-959 Rzeszów, PolandIn this paper, we study two generalizations of dual-hyperbolic balancing numbers: dual-hyperbolic Horadam numbers and dual-hyperbolic <i>k</i>-balancing numbers. We give Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity for them.https://www.mdpi.com/2073-8994/12/11/1866balancing numbersDiophantine equationdual-hyperbolic numbersBinet formulaCatalan’s identity
spellingShingle Dorota Bród
Anetta Szynal-Liana
Iwona Włoch
Two Generalizations of Dual-Hyperbolic Balancing Numbers
Symmetry
balancing numbers
Diophantine equation
dual-hyperbolic numbers
Binet formula
Catalan’s identity
title Two Generalizations of Dual-Hyperbolic Balancing Numbers
title_full Two Generalizations of Dual-Hyperbolic Balancing Numbers
title_fullStr Two Generalizations of Dual-Hyperbolic Balancing Numbers
title_full_unstemmed Two Generalizations of Dual-Hyperbolic Balancing Numbers
title_short Two Generalizations of Dual-Hyperbolic Balancing Numbers
title_sort two generalizations of dual hyperbolic balancing numbers
topic balancing numbers
Diophantine equation
dual-hyperbolic numbers
Binet formula
Catalan’s identity
url https://www.mdpi.com/2073-8994/12/11/1866
work_keys_str_mv AT dorotabrod twogeneralizationsofdualhyperbolicbalancingnumbers
AT anettaszynalliana twogeneralizationsofdualhyperbolicbalancingnumbers
AT iwonawłoch twogeneralizationsofdualhyperbolicbalancingnumbers