Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight

Our main purpose in this paper is to study the anisotropic Moser–Trudinger-type inequalities with logarithmic weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi...

Full description

Bibliographic Details
Main Authors: Tao Zhang, Jie Liu
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/5/785
_version_ 1797264145133862912
author Tao Zhang
Jie Liu
author_facet Tao Zhang
Jie Liu
author_sort Tao Zhang
collection DOAJ
description Our main purpose in this paper is to study the anisotropic Moser–Trudinger-type inequalities with logarithmic weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>β</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msup><mrow><mo stretchy="false">[</mo><mo>−</mo><mo form="prefix">ln</mo><msup><mi>F</mi><mi>o</mi></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">|</mo></mrow><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>β</mi></mrow></msup><mo>.</mo></mrow></semantics></math></inline-formula> This can be seen as a generation result of the isotropic Moser–Trudinger inequality with logarithmic weight. Furthermore, we obtain the existence of extremal function when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is small. Finally, we give Lions’ concentration-compactness principle, which is the improvement of the anisotropic Moser–Trudinger-type inequality.
first_indexed 2024-04-25T00:24:14Z
format Article
id doaj.art-4c3d8b33836b46b491a8d5893c0c9f32
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-04-25T00:24:14Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-4c3d8b33836b46b491a8d5893c0c9f322024-03-12T16:50:22ZengMDPI AGMathematics2227-73902024-03-0112578510.3390/math12050785Anisotropic Moser–Trudinger-Type Inequality with Logarithmic WeightTao Zhang0Jie Liu1School of Mathematics and Information Science, Yantai University, Yantai 264005, ChinaSchool of Mathematics and Information Science, Yantai University, Yantai 264005, ChinaOur main purpose in this paper is to study the anisotropic Moser–Trudinger-type inequalities with logarithmic weight <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ω</mi><mi>β</mi></msub><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo>=</mo><msup><mrow><mo stretchy="false">[</mo><mo>−</mo><mo form="prefix">ln</mo><msup><mi>F</mi><mi>o</mi></msup><mrow><mo stretchy="false">(</mo><mi>x</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">|</mo></mrow><mrow><mo stretchy="false">(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo stretchy="false">)</mo><mi>β</mi></mrow></msup><mo>.</mo></mrow></semantics></math></inline-formula> This can be seen as a generation result of the isotropic Moser–Trudinger inequality with logarithmic weight. Furthermore, we obtain the existence of extremal function when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>β</mi></semantics></math></inline-formula> is small. Finally, we give Lions’ concentration-compactness principle, which is the improvement of the anisotropic Moser–Trudinger-type inequality.https://www.mdpi.com/2227-7390/12/5/785anisotropic Moser–Trudinger-type inequalitylogarithmic weightexistence of extremal function
spellingShingle Tao Zhang
Jie Liu
Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight
Mathematics
anisotropic Moser–Trudinger-type inequality
logarithmic weight
existence of extremal function
title Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight
title_full Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight
title_fullStr Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight
title_full_unstemmed Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight
title_short Anisotropic Moser–Trudinger-Type Inequality with Logarithmic Weight
title_sort anisotropic moser trudinger type inequality with logarithmic weight
topic anisotropic Moser–Trudinger-type inequality
logarithmic weight
existence of extremal function
url https://www.mdpi.com/2227-7390/12/5/785
work_keys_str_mv AT taozhang anisotropicmosertrudingertypeinequalitywithlogarithmicweight
AT jieliu anisotropicmosertrudingertypeinequalitywithlogarithmicweight