Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub>
In two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In...
Main Authors: | , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-04-01
|
Series: | Nanomaterials |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-4991/10/4/711 |
_version_ | 1827719026667683840 |
---|---|
author | Foad Ghasemi Riccardo Frisenda Eduardo Flores Nikos Papadopoulos Robert Biele David Perez de Lara Herre S. J. van der Zant Kenji Watanabe Takashi Taniguchi Roberto D’Agosta Jose R. Ares Carlos Sánchez Isabel J. Ferrer Andres Castellanos-Gomez |
author_facet | Foad Ghasemi Riccardo Frisenda Eduardo Flores Nikos Papadopoulos Robert Biele David Perez de Lara Herre S. J. van der Zant Kenji Watanabe Takashi Taniguchi Roberto D’Agosta Jose R. Ares Carlos Sánchez Isabel J. Ferrer Andres Castellanos-Gomez |
author_sort | Foad Ghasemi |
collection | DOAJ |
description | In two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In particular, we demonstrate the controlled oxidation of titanium trisulfide (TiS<sub>3</sub>), a layered semicon-ductor that has attracted much attention recently thanks to its quasi-1D electronic and optoelectron-ic properties and its direct bandgap of 1.1 eV. Heating TiS<sub>3</sub> in air above 300 °C gradually converts it into TiO<sub>2</sub>, a semiconductor with a wide bandgap of 3.2 eV with applications in photo-electrochemistry and catalysis. In this work, we investigate the controlled thermal oxidation of indi-vidual TiS<sub>3</sub> nanoribbons and its influence on the optoelectronic properties of TiS<sub>3</sub>-based photodetec-tors. We observe a step-wise change in the cut-off wavelength from its pristine value ~1000 nm to 450 nm after subjecting the TiS<sub>3</sub> devices to subsequent thermal treatment cycles. Ab-initio and many-body calculations confirm an increase in the bandgap of titanium oxysulfide (TiO<sub>2-x</sub>S<sub>x</sub>) when in-creasing the amount of oxygen and reducing the amount of sulfur. |
first_indexed | 2024-03-10T20:34:38Z |
format | Article |
id | doaj.art-4c3fcbc6c4d3456ca86ff444d76d0060 |
institution | Directory Open Access Journal |
issn | 2079-4991 |
language | English |
last_indexed | 2024-03-10T20:34:38Z |
publishDate | 2020-04-01 |
publisher | MDPI AG |
record_format | Article |
series | Nanomaterials |
spelling | doaj.art-4c3fcbc6c4d3456ca86ff444d76d00602023-11-19T21:07:00ZengMDPI AGNanomaterials2079-49912020-04-0110471110.3390/nano10040711Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub>Foad Ghasemi0Riccardo Frisenda1Eduardo Flores2Nikos Papadopoulos3Robert Biele4David Perez de Lara5Herre S. J. van der Zant6Kenji Watanabe7Takashi Taniguchi8Roberto D’Agosta9Jose R. Ares10Carlos Sánchez11Isabel J. Ferrer12Andres Castellanos-Gomez13Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus de Cantoblanco, E-28049 Madrid, SpainMaterials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, SpainMaterials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, UAM, Campus de Cantoblanco, E-28049 Madrid, SpainKavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The NetherlandsNano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, Av.Tolosa 72, 20018 San Sebastián, SpainInstituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Campus de Cantoblanco, E-28049 Madrid, SpainKavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The NetherlandsNational Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, JapanNational Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, JapanNano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del País Vasco CFM CSIC-UPV/EHU-MPC & DIPC, Av.Tolosa 72, 20018 San Sebastián, SpainMaterials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, UAM, Campus de Cantoblanco, E-28049 Madrid, SpainMaterials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, UAM, Campus de Cantoblanco, E-28049 Madrid, SpainMaterials of Interest in Renewable Energies Group (MIRE Group), Dpto. de Física de Materiales, Universidad Autónoma de Madrid, UAM, Campus de Cantoblanco, E-28049 Madrid, SpainMaterials Science Factory, Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), E-28049 Madrid, SpainIn two-dimensional materials research, oxidation is usually considered as a common source for the degradation of electronic and optoelectronic devices or even device failure. However, in some cases a controlled oxidation can open the possibility to widely tune the band structure of 2D materials. In particular, we demonstrate the controlled oxidation of titanium trisulfide (TiS<sub>3</sub>), a layered semicon-ductor that has attracted much attention recently thanks to its quasi-1D electronic and optoelectron-ic properties and its direct bandgap of 1.1 eV. Heating TiS<sub>3</sub> in air above 300 °C gradually converts it into TiO<sub>2</sub>, a semiconductor with a wide bandgap of 3.2 eV with applications in photo-electrochemistry and catalysis. In this work, we investigate the controlled thermal oxidation of indi-vidual TiS<sub>3</sub> nanoribbons and its influence on the optoelectronic properties of TiS<sub>3</sub>-based photodetec-tors. We observe a step-wise change in the cut-off wavelength from its pristine value ~1000 nm to 450 nm after subjecting the TiS<sub>3</sub> devices to subsequent thermal treatment cycles. Ab-initio and many-body calculations confirm an increase in the bandgap of titanium oxysulfide (TiO<sub>2-x</sub>S<sub>x</sub>) when in-creasing the amount of oxygen and reducing the amount of sulfur.https://www.mdpi.com/2079-4991/10/4/7112D materialsphotodetectorsoxidationTiS<sub>3</sub>TiO<sub>2</sub>Raman spectroscopy |
spellingShingle | Foad Ghasemi Riccardo Frisenda Eduardo Flores Nikos Papadopoulos Robert Biele David Perez de Lara Herre S. J. van der Zant Kenji Watanabe Takashi Taniguchi Roberto D’Agosta Jose R. Ares Carlos Sánchez Isabel J. Ferrer Andres Castellanos-Gomez Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub> Nanomaterials 2D materials photodetectors oxidation TiS<sub>3</sub> TiO<sub>2</sub> Raman spectroscopy |
title | Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub> |
title_full | Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub> |
title_fullStr | Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub> |
title_full_unstemmed | Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub> |
title_short | Tunable Photodetectors via In Situ Thermal Conversion of TiS<sub>3</sub> to TiO<sub>2</sub> |
title_sort | tunable photodetectors via in situ thermal conversion of tis sub 3 sub to tio sub 2 sub |
topic | 2D materials photodetectors oxidation TiS<sub>3</sub> TiO<sub>2</sub> Raman spectroscopy |
url | https://www.mdpi.com/2079-4991/10/4/711 |
work_keys_str_mv | AT foadghasemi tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT riccardofrisenda tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT eduardoflores tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT nikospapadopoulos tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT robertbiele tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT davidperezdelara tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT herresjvanderzant tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT kenjiwatanabe tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT takashitaniguchi tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT robertodagosta tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT joserares tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT carlossanchez tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT isabeljferrer tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub AT andrescastellanosgomez tunablephotodetectorsviainsituthermalconversionoftissub3subtotiosub2sub |