Symplectic Dynamics and Simultaneous Resonance Analysis of Memristor Circuit Based on Its van der Pol Oscillator

A non-autonomous memristor circuit based on van der Pol oscillator with double periodically forcing term is presented and discussed. Firstly, the differences of the van der Pol oscillation of memristor model between Euler method and symplectic Euler method, four-order Runge–Kutta method (RK4) and fo...

Full description

Bibliographic Details
Main Authors: Baonan Yang, Zhen Wang, Huaigu Tian, Jindong Liu
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/6/1251
Description
Summary:A non-autonomous memristor circuit based on van der Pol oscillator with double periodically forcing term is presented and discussed. Firstly, the differences of the van der Pol oscillation of memristor model between Euler method and symplectic Euler method, four-order Runge–Kutta method (RK4) and four-order symplectic Runge–Kutta–Nyström method (SRKN4), symplectic Euler method and RK4 method, and symplectic Euler method and SRKN4 method in preserving structure are compared from theoretical and numerical simulations, the symmetry and structure preserving and numerical stability of symplectic scheme are demonstrated. Moreover, the analytic solution of the primary and subharmonic simultaneous resonance of this system is obtained by using the multi-scale method. Finally, based on the resonance relation of the system, the chaotic dynamics behaviors with different parameters are studied.
ISSN:2073-8994