Summary: | Consider the problem of modeling datasets such as numbers of accidents in a population of insured persons, or incidences of an illness in a population. Various levels of detail or granularity may be considered in describing the parent population. The levels used in fitting data and hence in describing the population may vary from a single distribution, possibly with extreme values, to a bimodal distribution, to a mixture of two or more distributions via the Finite Mixture Model, to modeling the population at the individual level via a compound model, which may be viewed as an infinite mixture model. Given a dataset, it is shown how to evaluate the fits of the various models by information criteria. Two datasets are considered in detail, one discrete, the other, continuous.
|