Summary: | <p>Abstract</p> <p>Background</p> <p>The integrase (IN) of human immunodeficiency virus type 1 (HIV-1) has been implicated in different steps during viral replication, including nuclear import of the viral pre-integration complex. The exact mechanisms underlying the nuclear import of IN and especially the question of whether it bears a functional nuclear localization signal (NLS) remain controversial.</p> <p>Results</p> <p>Here, we studied the nuclear import pathway of IN by using multiple <it>in vivo </it>and <it>in vitro </it>systems. Nuclear import was not observed in an importin α temperature-sensitive yeast mutant, indicating an importin α-mediated process. Direct interaction between the full-length IN and importin α was demonstrated <it>in vivo </it>using bimolecular fluorescence complementation assay (BiFC). Nuclear import studies in yeast cells, with permeabilized mammalian cells, or microinjected cultured mammalian cells strongly suggest that the IN bears a NLS domain located between residues 161 and 173. A peptide bearing this sequence -NLS-IN peptide- inhibited nuclear accumulation of IN in transfected cell-cycle arrested cells. Integration of viral cDNA as well as HIV-1 replication in viral cell-cycle arrested infected cells were blocked by the NLS-IN peptide.</p> <p>Conclusion</p> <p>Our present findings support the view that nuclear import of IN occurs via the importin α pathway and is promoted by a specific NLS domain. This import could be blocked by NLS-IN peptide, resulting in inhibition of viral infection, confirming the view that nuclear import of the viral pre-integration complex is mediated by viral IN.</p>
|