Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia
Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage, transmission and distribution, and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/15/24/9558 |
_version_ | 1797459528991637504 |
---|---|
author | Carlo James Cunanan Carlos Andrés Elorza Casas Mitchell Yorke Michael Fowler Xiao-Yu Wu |
author_facet | Carlo James Cunanan Carlos Andrés Elorza Casas Mitchell Yorke Michael Fowler Xiao-Yu Wu |
author_sort | Carlo James Cunanan |
collection | DOAJ |
description | Green ammonia has potential as a zero-emissions energy vector in applications such as energy storage, transmission and distribution, and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day, which will use an 8 MW offshore turbine system off the coast of Nova Scotia, Canada as the main power source. The P2A system consists of a reverse osmosis system, a proton exchange membrane (PEM) electrolyser, a hydrogen storage tank, a nitrogen generator, a set of compressors and heat exchangers, an autothermal Haber-Bosch reactor, and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day, and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios, which is larger than the traditional fossil-fuel based ammonia production, when using the grid in provinces like Nova Scotia, even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne<sup>−1</sup> for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system, reducing the reliance on the electricity grid, increasing service life, and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive. |
first_indexed | 2024-03-09T16:52:40Z |
format | Article |
id | doaj.art-4c8c69e3db114099a74e23ab9c7e9249 |
institution | Directory Open Access Journal |
issn | 1996-1073 |
language | English |
last_indexed | 2024-03-09T16:52:40Z |
publishDate | 2022-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Energies |
spelling | doaj.art-4c8c69e3db114099a74e23ab9c7e92492023-11-24T14:39:08ZengMDPI AGEnergies1996-10732022-12-011524955810.3390/en15249558Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova ScotiaCarlo James Cunanan0Carlos Andrés Elorza Casas1Mitchell Yorke2Michael Fowler3Xiao-Yu Wu4Greener Production Group, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, CanadaDepartment of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, CanadaDepartment of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, CanadaDepartment of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, CanadaGreener Production Group, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, CanadaGreen ammonia has potential as a zero-emissions energy vector in applications such as energy storage, transmission and distribution, and zero-emissions transportation. Renewable energy such as offshore wind energy has been proposed to power its production. This paper designed and analyzed an on-land small-scale power-to-ammonia (P2A) production system with a target nominal output of 15 tonnes of ammonia per day, which will use an 8 MW offshore turbine system off the coast of Nova Scotia, Canada as the main power source. The P2A system consists of a reverse osmosis system, a proton exchange membrane (PEM) electrolyser, a hydrogen storage tank, a nitrogen generator, a set of compressors and heat exchangers, an autothermal Haber-Bosch reactor, and an ammonia storage tank. The system uses an electrical grid as a back-up for when the wind energy is insufficient as the process assumes a steady state. Two scenarios were analyzed with Scenario 1 producing a steady state of 15 tonnes of ammonia per day, and Scenario 2 being one that switched production rates whenever wind speeds were low to 55% the nominal capacity. The results show that the grid connected P2A system has significant emissions for both scenarios, which is larger than the traditional fossil-fuel based ammonia production, when using the grid in provinces like Nova Scotia, even if it is just a back-up during low wind power generation. The levelized cost of ammonia (LCOA) was calculated to be at least 2323 CAD tonne<sup>−1</sup> for both scenarios which is not cost competitive in this small production scale. Scaling up the whole system, reducing the reliance on the electricity grid, increasing service life, and decreasing windfarm costs could reduce the LCOA and make this P2A process more cost competitive.https://www.mdpi.com/1996-1073/15/24/9558power-to-ammoniahydrogenoffshore windrenewable energy |
spellingShingle | Carlo James Cunanan Carlos Andrés Elorza Casas Mitchell Yorke Michael Fowler Xiao-Yu Wu Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia Energies power-to-ammonia hydrogen offshore wind renewable energy |
title | Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia |
title_full | Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia |
title_fullStr | Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia |
title_full_unstemmed | Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia |
title_short | Design and Analysis of an Offshore Wind Power to Ammonia Production System in Nova Scotia |
title_sort | design and analysis of an offshore wind power to ammonia production system in nova scotia |
topic | power-to-ammonia hydrogen offshore wind renewable energy |
url | https://www.mdpi.com/1996-1073/15/24/9558 |
work_keys_str_mv | AT carlojamescunanan designandanalysisofanoffshorewindpowertoammoniaproductionsysteminnovascotia AT carlosandreselorzacasas designandanalysisofanoffshorewindpowertoammoniaproductionsysteminnovascotia AT mitchellyorke designandanalysisofanoffshorewindpowertoammoniaproductionsysteminnovascotia AT michaelfowler designandanalysisofanoffshorewindpowertoammoniaproductionsysteminnovascotia AT xiaoyuwu designandanalysisofanoffshorewindpowertoammoniaproductionsysteminnovascotia |