PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis

Electrocardiogram (ECG) visual analysis is a common task performed by a healthcare specialist as a cardiovascular-diseases pre-diagnostic technique. However, when an ECG specialist analyzes long-time duration records (such as a 24-h Holter), the task becomes tiresome, complicated, and a probable err...

Full description

Bibliographic Details
Main Authors: Nestor Alexander Zermeño-Campos, Daniel Cuevas-González, Juan Pablo García-Vázquez, Roberto López-Avitia, Miguel Enrique Bravo-Zanoguera, Marco A. Reyna, Arnoldo Díaz-Ramírez
Format: Article
Language:English
Published: Elsevier 2022-07-01
Series:SoftwareX
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352711022000814
_version_ 1798020736338624512
author Nestor Alexander Zermeño-Campos
Daniel Cuevas-González
Juan Pablo García-Vázquez
Roberto López-Avitia
Miguel Enrique Bravo-Zanoguera
Marco A. Reyna
Arnoldo Díaz-Ramírez
author_facet Nestor Alexander Zermeño-Campos
Daniel Cuevas-González
Juan Pablo García-Vázquez
Roberto López-Avitia
Miguel Enrique Bravo-Zanoguera
Marco A. Reyna
Arnoldo Díaz-Ramírez
author_sort Nestor Alexander Zermeño-Campos
collection DOAJ
description Electrocardiogram (ECG) visual analysis is a common task performed by a healthcare specialist as a cardiovascular-diseases pre-diagnostic technique. However, when an ECG specialist analyzes long-time duration records (such as a 24-h Holter), the task becomes tiresome, complicated, and a probable erroneous diagnostic. This article presents a cloud-based application called PÉEK that helps healthcare specialists automatically detect normal and abnormal heartbeats on ECG registers using Stationary Wavelet Transform (SWT) and Convolutional Neural Networks (CNN). In order to illustrate the functionality of PÉEK, we present the analysis of set ECG traces from the MIT-BIH Arrhythmia Database. This software can detect with a 99.09% accuracy normal heartbeats, premature ventricular contractions (PVC) beats, and others (Premature Atrial Contraction, Left Bundle Branch Block, and Right Bundle Branch Block).
first_indexed 2024-04-11T17:02:29Z
format Article
id doaj.art-4caa3e4dee494d889acf7c110055ad4a
institution Directory Open Access Journal
issn 2352-7110
language English
last_indexed 2024-04-11T17:02:29Z
publishDate 2022-07-01
publisher Elsevier
record_format Article
series SoftwareX
spelling doaj.art-4caa3e4dee494d889acf7c110055ad4a2022-12-22T04:13:07ZengElsevierSoftwareX2352-71102022-07-0119101124PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosisNestor Alexander Zermeño-Campos0Daniel Cuevas-González1Juan Pablo García-Vázquez2Roberto López-Avitia3Miguel Enrique Bravo-Zanoguera4Marco A. Reyna5Arnoldo Díaz-Ramírez6Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali B.C., MexicoFacultad de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali B.C., Mexico; Instituto de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali, B.C., MexicoFacultad de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali B.C., Mexico; Corresponding author.Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali B.C., MexicoFacultad de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali B.C., Mexico; Instituto Tecnológico de Mexicali (ITM), Mexicali B.C., MexicoInstituto de Ingeniería, Universidad Autónoma de Baja California (UABC), MyDCI, Mexicali, B.C., MexicoInstituto Tecnológico de Mexicali (ITM), Mexicali B.C., MexicoElectrocardiogram (ECG) visual analysis is a common task performed by a healthcare specialist as a cardiovascular-diseases pre-diagnostic technique. However, when an ECG specialist analyzes long-time duration records (such as a 24-h Holter), the task becomes tiresome, complicated, and a probable erroneous diagnostic. This article presents a cloud-based application called PÉEK that helps healthcare specialists automatically detect normal and abnormal heartbeats on ECG registers using Stationary Wavelet Transform (SWT) and Convolutional Neural Networks (CNN). In order to illustrate the functionality of PÉEK, we present the analysis of set ECG traces from the MIT-BIH Arrhythmia Database. This software can detect with a 99.09% accuracy normal heartbeats, premature ventricular contractions (PVC) beats, and others (Premature Atrial Contraction, Left Bundle Branch Block, and Right Bundle Branch Block).http://www.sciencedirect.com/science/article/pii/S2352711022000814ArrhythmiaElectrocardiogramECGDeep learningConvolutional neural networks
spellingShingle Nestor Alexander Zermeño-Campos
Daniel Cuevas-González
Juan Pablo García-Vázquez
Roberto López-Avitia
Miguel Enrique Bravo-Zanoguera
Marco A. Reyna
Arnoldo Díaz-Ramírez
PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis
SoftwareX
Arrhythmia
Electrocardiogram
ECG
Deep learning
Convolutional neural networks
title PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis
title_full PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis
title_fullStr PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis
title_full_unstemmed PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis
title_short PÉEK: A cloud-based application for automatic electrocardiogram pre-diagnosis
title_sort peek a cloud based application for automatic electrocardiogram pre diagnosis
topic Arrhythmia
Electrocardiogram
ECG
Deep learning
Convolutional neural networks
url http://www.sciencedirect.com/science/article/pii/S2352711022000814
work_keys_str_mv AT nestoralexanderzermenocampos peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis
AT danielcuevasgonzalez peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis
AT juanpablogarciavazquez peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis
AT robertolopezavitia peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis
AT miguelenriquebravozanoguera peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis
AT marcoareyna peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis
AT arnoldodiazramirez peekacloudbasedapplicationforautomaticelectrocardiogramprediagnosis