Topological Characterization of Complex Systems: Using Persistent Entropy

In this paper, we propose a methodology for deriving a model of a complex system by exploiting the information extracted from topological data analysis. Central to our approach is the S[B] paradigm in which a complex system is represented by a two-level model. One level, the structural S one, is der...

Full description

Bibliographic Details
Main Authors: Emanuela Merelli, Matteo Rucco, Peter Sloot, Luca Tesei
Format: Article
Language:English
Published: MDPI AG 2015-10-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/17/10/6872
Description
Summary:In this paper, we propose a methodology for deriving a model of a complex system by exploiting the information extracted from topological data analysis. Central to our approach is the S[B] paradigm in which a complex system is represented by a two-level model. One level, the structural S one, is derived using the newly-introduced quantitative concept of persistent entropy, and it is described by a persistent entropy automaton. The other level, the behavioral B one, is characterized by a network of interacting computational agents. The presented methodology is applied to a real case study, the idiotypic network of the mammalian immune system.
ISSN:1099-4300