Fruit Powder Analysis Using Machine Learning Based on Color and FTIR-ATR Spectroscopy—Case Study: Blackcurrant Powders

Fruits represent a valuable source of bioactivity, vitamins, minerals and antioxidants. They are often used in research due to their potential to extend sustainability and edibility. In this research, the currants were used to obtain currant powders by dehumidified air-assisted spray drying. In the...

Full description

Bibliographic Details
Main Authors: Krzysztof Przybył, Katarzyna Walkowiak, Aleksandra Jedlińska, Katarzyna Samborska, Łukasz Masewicz, Jakub Biegalski, Tomasz Pawlak, Krzysztof Koszela
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/13/16/9098
Description
Summary:Fruits represent a valuable source of bioactivity, vitamins, minerals and antioxidants. They are often used in research due to their potential to extend sustainability and edibility. In this research, the currants were used to obtain currant powders by dehumidified air-assisted spray drying. In the research analysis of currant powders, advanced machine learning techniques were used in combination with Lab color space model analysis and Fourier transform infrared spectroscopy (FTIR). The aim of this project was to provide authentic information about the qualities of currant powders, taking into account their type and carrier content. In addition, the machine learning models were developed to support the recognition of individual blackcurrant powder samples based on Lab color. These results were compared using their physical properties and FTIR spectroscopy to determine the homogeneity of these powders; this will help reduce operating and energy costs while also increasing the production rate, and even the possibility of improving the available drying system.
ISSN:2076-3417