One-Step Hot Microembossing for Fabrication of Paper-Based Microfluidic Chips in 10 Seconds

In recent years, microfluidic paper-based analytical devices (µPADs) have been developed because they are simple, inexpensive and power-free for low-cost chemical, biological and environmental detection. Moreover, paper is lightweight; easy to stack, store and transport; biodegradable; biocompatible...

Full description

Bibliographic Details
Main Authors: Yi-Je Juang, Yu Wang, Shu-Kai Hsu
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/12/11/2493
Description
Summary:In recent years, microfluidic paper-based analytical devices (µPADs) have been developed because they are simple, inexpensive and power-free for low-cost chemical, biological and environmental detection. Moreover, paper is lightweight; easy to stack, store and transport; biodegradable; biocompatible; good for colorimetric tests; flammable for easy disposal of used paper-based diagnostic devices by incineration; and can be chemically modified. Different methods have been demonstrated to fabricate µPADs such as solid wax printing, craft cutting, photolithography, etc. In this study, one-step hot microembossing was proposed and demonstrated to fabricate µPADs. The processing parameters like embossing temperature, pressure and time were systematically investigated. It was found that, at 55 °C embossing temperature, the embossing pressure ranging from 10 to 14 MPa could be applied and the embossing time was only 5 s. This led to the overall processing time for fabrication of µPADs within 10 s. Glucose detection was conducted using the µPADs as fabricated, and a linear relationship was obtained between 5 and 50 mM.
ISSN:2073-4360