Automatic Continuous Control of Cuff Pressure and Subglottic Secretion Suction Used Together to Prevent Pneumonia in Ventilated Patients—A Retrospective and Prospective Cohort Study

The ventilator bundle consists of multiple methods to reduce ventilator-associated pneumonia (VAP) rates in Intensive Care Units (ICU). The aim of the study was to evaluate how the continuous automatic pressure control in tapered cuffs of endotracheal/tracheostomy tubes applied along with continuous...

Full description

Bibliographic Details
Main Authors: Lucyna Tomaszek, Jarosław Pawlik, Henryk Mazurek, Wioletta Mędrzycka-Dąbrowska
Format: Article
Language:English
Published: MDPI AG 2021-10-01
Series:Journal of Clinical Medicine
Subjects:
Online Access:https://www.mdpi.com/2077-0383/10/21/4952
Description
Summary:The ventilator bundle consists of multiple methods to reduce ventilator-associated pneumonia (VAP) rates in Intensive Care Units (ICU). The aim of the study was to evaluate how the continuous automatic pressure control in tapered cuffs of endotracheal/tracheostomy tubes applied along with continuous automatic subglottic secretion suction affect the incidence of VAP. In the prospective cohort (<i>n</i> = 198), the standard VAP bundle was modified by continuous automatic pressure control in taper-shaped cuff of endotracheal/tracheostomy tubes and subglottic secretion suction. VAP incidence, time to VAP onset, invasive mechanical ventilation days/free days, length of ICU stay, ICU mortality, and multidrug-resistant bacteria were assessed and compared to the retrospective cohort (<i>n</i> = 173) with the standard bundle (intermittent cuff pressure of standard cuff, lack of subglottic secretion suction). A smaller incidence of VAP (9.6% vs. 19.1%) and early onset VAP (1.5% vs. 8.1%) was found in the prospective compared to the retrospective cohort (<i>p</i> < 0.01). Patients in the prospective cohort were less likely to develop VAP (RR = 0.50; 95% CI: 0.29 to 0.85) and early-onset VAP (RR = 0.19; 95% CI: 0.05 to 0.64) and had longer time to onset VAP (median 9 vs. 5 days; <i>p</i> = 0.03). There was no significant difference (<i>p</i> > 0.05) between both cohorts in terms of invasive mechanical ventilation days/free days, length of ICU stay, ICU mortality and multidrug-resistant bacteria. Modification of the bundle for prevention of VAP can reduce early-onset VAP and total incidence of VAP and delay the time of VAP occurrence.
ISSN:2077-0383