Estimation of electrostatic and covalent contributions to the enthalpy of H-bond formation in H-complexes of 1,2,3-benzotriazole with proton-acceptor molecules by IR spectroscopy and DFT calculations

Using the methods of IR-spectroscopy and quantum chemical calculations, we determined the formation of an H-bond between the 1,2,3-benzotriazole molecule and the molecules of acetone, dioxane, DMF, and DMSO. Quantum chemistry methods have been used to calculate the sums of charge changes in the atom...

Full description

Bibliographic Details
Main Authors: M.Kh. Khodiev, U.A. Holikulov, Noureddine ISSAOUI, Omar M. Al-Dossary, Leda G. Bousiakoug, N.L. Lavrik
Format: Article
Language:English
Published: Elsevier 2023-04-01
Series:Journal of King Saud University: Science
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S101836472200711X
Description
Summary:Using the methods of IR-spectroscopy and quantum chemical calculations, we determined the formation of an H-bond between the 1,2,3-benzotriazole molecule and the molecules of acetone, dioxane, DMF, and DMSO. Quantum chemistry methods have been used to calculate the sums of charge changes in the atoms of the 1,2,3-benzotriazole molecule and of proton acceptor molecules (acetone, dioxane, DMF, and DMSO) due to the formation of their complexes with an H-bond (H-complexes NH…O). The sum of charge changes was taken as a contribution of a covalent component to H-bond formation. It has been established that as the sum of charge changes in N, H, and O or H and O, forming the H-complex, increases, the enthalpy of H-complex formation (EF) decreases. On the contrary, the EO of H-complexes increases when the product of the initial charges on the H and O atoms increases. In the absence of H-complexes, the product of charges was considered the electrostatic component of H-bond formation. The criterion of the value of H-bond EF was the value of a low-frequency shift of the initial position of the maximum IR absorption band of the NH vibration of the 1,2,3-benzotriazole molecule relative to its position in a neutral CCl4 solvent. The results of QTAIM, NCI, and RDG analyses showed that the values of energy densities in BCPs have a positive value in the complexes formed by 1,2,3-benzotriazole with acetone, dioxane, and DMFA, and such hydrogen bonds are electrostatic in nature. In the complex formed by 1,2,3-benzotriazole and DMSO, it has a negative value and a covalent character. The data obtained have allowed for two main conclusions: (i) In the formation of the H-complexes of the 1,2,3-benzotriazole molecule with proton-acceptor molecules containing oxygen atoms, the main contribution to H-bond formation is made by the electrostatic component. (ii) The contribution of the covalent component increases with increasing enthalpy of H-bond formation.
ISSN:1018-3647