A note on the maximum likelihood estimator in the gamma regression model

This paper considers a nonlinear regression model, in which the dependent variable has the gamma distribution. A model is considered in which the shape parameter of the random variable is the sum of continuous and algebraically independent functions. The paper proves that there is exactly one maximu...

Full description

Bibliographic Details
Main Author: Jerzy P. Rydlewski
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2009-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol29/3/art/opuscula_math_2924.pdf
_version_ 1818672706134999040
author Jerzy P. Rydlewski
author_facet Jerzy P. Rydlewski
author_sort Jerzy P. Rydlewski
collection DOAJ
description This paper considers a nonlinear regression model, in which the dependent variable has the gamma distribution. A model is considered in which the shape parameter of the random variable is the sum of continuous and algebraically independent functions. The paper proves that there is exactly one maximum likelihood estimator for the gamma regression model.
first_indexed 2024-12-17T07:44:09Z
format Article
id doaj.art-4ccff8a595a94cb6a79336b5a2e93c5f
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-17T07:44:09Z
publishDate 2009-01-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-4ccff8a595a94cb6a79336b5a2e93c5f2022-12-21T21:58:03ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742009-01-01293305312http://dx.doi.org/10.7494/OpMath.2009.29.3.3052924A note on the maximum likelihood estimator in the gamma regression modelJerzy P. Rydlewski0AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Krakow, PolandThis paper considers a nonlinear regression model, in which the dependent variable has the gamma distribution. A model is considered in which the shape parameter of the random variable is the sum of continuous and algebraically independent functions. The paper proves that there is exactly one maximum likelihood estimator for the gamma regression model.http://www.opuscula.agh.edu.pl/vol29/3/art/opuscula_math_2924.pdfgamma regressionnonlinear regressionmaximum likelihood estimatorshape parameter
spellingShingle Jerzy P. Rydlewski
A note on the maximum likelihood estimator in the gamma regression model
Opuscula Mathematica
gamma regression
nonlinear regression
maximum likelihood estimator
shape parameter
title A note on the maximum likelihood estimator in the gamma regression model
title_full A note on the maximum likelihood estimator in the gamma regression model
title_fullStr A note on the maximum likelihood estimator in the gamma regression model
title_full_unstemmed A note on the maximum likelihood estimator in the gamma regression model
title_short A note on the maximum likelihood estimator in the gamma regression model
title_sort note on the maximum likelihood estimator in the gamma regression model
topic gamma regression
nonlinear regression
maximum likelihood estimator
shape parameter
url http://www.opuscula.agh.edu.pl/vol29/3/art/opuscula_math_2924.pdf
work_keys_str_mv AT jerzyprydlewski anoteonthemaximumlikelihoodestimatorinthegammaregressionmodel
AT jerzyprydlewski noteonthemaximumlikelihoodestimatorinthegammaregressionmodel