<i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning

This paper presents a methodology for static security assessment of transmission network planning using machine learning (ML). The objective is to accelerate the probabilistic risk assessment of the Hydro-Quebec (HQ) TransÉnergie transmission grid. The model takes the expected power supply and the s...

Full description

Bibliographic Details
Main Authors: David L. Alvarez, Mohamed Gaha, Jacques Prévost, Alain Côté, Georges Abdul-Nour, Toualith Jean-Marc Meango
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/17/2/292
_version_ 1797344141922795520
author David L. Alvarez
Mohamed Gaha
Jacques Prévost
Alain Côté
Georges Abdul-Nour
Toualith Jean-Marc Meango
author_facet David L. Alvarez
Mohamed Gaha
Jacques Prévost
Alain Côté
Georges Abdul-Nour
Toualith Jean-Marc Meango
author_sort David L. Alvarez
collection DOAJ
description This paper presents a methodology for static security assessment of transmission network planning using machine learning (ML). The objective is to accelerate the probabilistic risk assessment of the Hydro-Quebec (HQ) TransÉnergie transmission grid. The model takes the expected power supply and the status of the elements in a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mi>k</mi></mrow></semantics></math></inline-formula> contingency scenario as inputs. The output is the reliability metric Expecting Load Shedding Cost (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>L</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula>). To train and test the regression model, stochastic data are performed, resulting in a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mi>k</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mfenced separators="" open="{" close="}"><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mfenced></mrow></semantics></math></inline-formula> contingency scenarios used as inputs. Subsequently, the output is computed for each scenario by performing load shedding using an optimal power flow algorithm, with the objective function of minimizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>L</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula>. Experimental results on the well-known IEEE-39 bus test system and PEGASE-1354 system demonstrate the potential of the proposed methodology in generalizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>L</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula> during an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mi>k</mi></mrow></semantics></math></inline-formula> contingency. For up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> the coefficient of determination <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msup><mi>R</mi><mn>2</mn></msup></mfenced></semantics></math></inline-formula> obtained was close to 98% for both case studies, achieving a speed-up of over four orders of magnitude with the use of a Multilayer Perceptron (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>L</mi><mi>P</mi></mrow></semantics></math></inline-formula>). This approach and its results have not been addressed in the literature, making this methodology a contribution to the state of the art.
first_indexed 2024-03-08T10:58:03Z
format Article
id doaj.art-4cd0a4bb4d0a4600b4c289a7627db1c5
institution Directory Open Access Journal
issn 1996-1073
language English
last_indexed 2024-03-08T10:58:03Z
publishDate 2024-01-01
publisher MDPI AG
record_format Article
series Energies
spelling doaj.art-4cd0a4bb4d0a4600b4c289a7627db1c52024-01-26T16:15:25ZengMDPI AGEnergies1996-10732024-01-0117229210.3390/en17020292<i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine LearningDavid L. Alvarez0Mohamed Gaha1Jacques Prévost2Alain Côté3Georges Abdul-Nour4Toualith Jean-Marc Meango5Hydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, CanadaHydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, CanadaHydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, CanadaHydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, CanadaDépartement de Génie Industriel, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, CanadaHydro-Québec’s Research Institute—IREQ, Varennes, QC J3X 1P7, CanadaThis paper presents a methodology for static security assessment of transmission network planning using machine learning (ML). The objective is to accelerate the probabilistic risk assessment of the Hydro-Quebec (HQ) TransÉnergie transmission grid. The model takes the expected power supply and the status of the elements in a <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mi>k</mi></mrow></semantics></math></inline-formula> contingency scenario as inputs. The output is the reliability metric Expecting Load Shedding Cost (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>L</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula>). To train and test the regression model, stochastic data are performed, resulting in a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mi>k</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mfenced separators="" open="{" close="}"><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mfenced></mrow></semantics></math></inline-formula> contingency scenarios used as inputs. Subsequently, the output is computed for each scenario by performing load shedding using an optimal power flow algorithm, with the objective function of minimizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>L</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula>. Experimental results on the well-known IEEE-39 bus test system and PEGASE-1354 system demonstrate the potential of the proposed methodology in generalizing <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mi>L</mi><mi>S</mi><mi>C</mi></mrow></semantics></math></inline-formula> during an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mi>k</mi></mrow></semantics></math></inline-formula> contingency. For up to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>k</mi><mo>=</mo><mn>3</mn></mrow></semantics></math></inline-formula> the coefficient of determination <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mfenced separators="" open="(" close=")"><msup><mi>R</mi><mn>2</mn></msup></mfenced></semantics></math></inline-formula> obtained was close to 98% for both case studies, achieving a speed-up of over four orders of magnitude with the use of a Multilayer Perceptron (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>M</mi><mi>L</mi><mi>P</mi></mrow></semantics></math></inline-formula>). This approach and its results have not been addressed in the literature, making this methodology a contribution to the state of the art.https://www.mdpi.com/1996-1073/17/2/292load shedding optimal power flowmachine learningstatic security assessmenttransmission system planning
spellingShingle David L. Alvarez
Mohamed Gaha
Jacques Prévost
Alain Côté
Georges Abdul-Nour
Toualith Jean-Marc Meango
<i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning
Energies
load shedding optimal power flow
machine learning
static security assessment
transmission system planning
title <i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning
title_full <i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning
title_fullStr <i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning
title_full_unstemmed <i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning
title_short <i>N</i> − <i>k</i> Static Security Assessment for Power Transmission System Planning Using Machine Learning
title_sort i n i i k i static security assessment for power transmission system planning using machine learning
topic load shedding optimal power flow
machine learning
static security assessment
transmission system planning
url https://www.mdpi.com/1996-1073/17/2/292
work_keys_str_mv AT davidlalvarez iniikistaticsecurityassessmentforpowertransmissionsystemplanningusingmachinelearning
AT mohamedgaha iniikistaticsecurityassessmentforpowertransmissionsystemplanningusingmachinelearning
AT jacquesprevost iniikistaticsecurityassessmentforpowertransmissionsystemplanningusingmachinelearning
AT alaincote iniikistaticsecurityassessmentforpowertransmissionsystemplanningusingmachinelearning
AT georgesabdulnour iniikistaticsecurityassessmentforpowertransmissionsystemplanningusingmachinelearning
AT toualithjeanmarcmeango iniikistaticsecurityassessmentforpowertransmissionsystemplanningusingmachinelearning