Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$

In this paper, we investigate the bifurcation results of the fractional Kirchhoff–Schrödinger–Poisson system \begin{equation*} \begin{cases} M([u]_s^2)(-\Delta)^s u+V(x)u+\phi(x) u=\lambda g(x)|u|^{p-1}u+|u|^{2_s^*-2}u~~&{\rm in}~\mathbb{R}^3, \\ (-\Delta)^t \phi(x)=u^2~~&{\rm in...

Full description

Bibliographic Details
Main Authors: Linlin Wang, Yuming Xing
Format: Article
Language:English
Published: University of Szeged 2024-01-01
Series:Electronic Journal of Qualitative Theory of Differential Equations
Subjects:
Online Access:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10670
_version_ 1826866518773727232
author Linlin Wang
Yuming Xing
author_facet Linlin Wang
Yuming Xing
author_sort Linlin Wang
collection DOAJ
description In this paper, we investigate the bifurcation results of the fractional Kirchhoff–Schrödinger–Poisson system \begin{equation*} \begin{cases} M([u]_s^2)(-\Delta)^s u+V(x)u+\phi(x) u=\lambda g(x)|u|^{p-1}u+|u|^{2_s^*-2}u~~&{\rm in}~\mathbb{R}^3, \\ (-\Delta)^t \phi(x)=u^2~~&{\rm in}~\mathbb{R}^3, \end{cases} \end{equation*} where $s,t\in(0,1)$ with $2t+4s>3$ and the potential function $V$ is a continuous function. We show that the existence of components of (weak) solutions of the above equation bifurcates out from the first eigenvalue $\lambda_1$ of the problem $$(-\Delta)^s u+V(x)u=\lambda g(x)u\quad\mbox{in }\mathbb R^3.$$ The main feature of this paper is the inclusion of a potentially degenerate Kirchhoff model, combined with the critical nonlinearity.
first_indexed 2024-03-08T13:15:11Z
format Article
id doaj.art-4cd6db302a4443eb8363d4fe8740875a
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2025-02-16T22:00:59Z
publishDate 2024-01-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-4cd6db302a4443eb8363d4fe8740875a2025-01-15T21:24:58ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752024-01-012024311710.14232/ejqtde.2024.1.310670Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$Linlin Wang0Yuming XingSchool of Mathematics, Harbin Institute of Technology, Harbin, 150001, P.R. ChinaIn this paper, we investigate the bifurcation results of the fractional Kirchhoff–Schrödinger–Poisson system \begin{equation*} \begin{cases} M([u]_s^2)(-\Delta)^s u+V(x)u+\phi(x) u=\lambda g(x)|u|^{p-1}u+|u|^{2_s^*-2}u~~&{\rm in}~\mathbb{R}^3, \\ (-\Delta)^t \phi(x)=u^2~~&{\rm in}~\mathbb{R}^3, \end{cases} \end{equation*} where $s,t\in(0,1)$ with $2t+4s>3$ and the potential function $V$ is a continuous function. We show that the existence of components of (weak) solutions of the above equation bifurcates out from the first eigenvalue $\lambda_1$ of the problem $$(-\Delta)^s u+V(x)u=\lambda g(x)u\quad\mbox{in }\mathbb R^3.$$ The main feature of this paper is the inclusion of a potentially degenerate Kirchhoff model, combined with the critical nonlinearity.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10670kirchhoff–schrödinger–poisson systemglobal bifurcationfirst eigenvaluefractional laplacianthe fixed pointwhole space
spellingShingle Linlin Wang
Yuming Xing
Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
Electronic Journal of Qualitative Theory of Differential Equations
kirchhoff–schrödinger–poisson system
global bifurcation
first eigenvalue
fractional laplacian
the fixed point
whole space
title Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
title_full Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
title_fullStr Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
title_full_unstemmed Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
title_short Bifurcation analysis of fractional Kirchhoff–Schrödinger–Poisson systems in $\mathbb R^3$
title_sort bifurcation analysis of fractional kirchhoff schrodinger poisson systems in mathbb r 3
topic kirchhoff–schrödinger–poisson system
global bifurcation
first eigenvalue
fractional laplacian
the fixed point
whole space
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=10670
work_keys_str_mv AT linlinwang bifurcationanalysisoffractionalkirchhoffschrodingerpoissonsystemsinmathbbr3
AT yumingxing bifurcationanalysisoffractionalkirchhoffschrodingerpoissonsystemsinmathbbr3