3D modeling of boron transport in DIII-D L-mode wall conditioning experiments

DIII-D L-mode experiments with local boron powder injection for real-time wall conditioning have been interpreted for the first time with the 3D plasma edge transport Monte Carlo code EMC3-EIRENE. Local B sourcing in plasma scenarios with upstream densities 1.5⋅1019m−3 and 2.2 MW heating results in...

Full description

Bibliographic Details
Main Authors: F. Effenberg, A. Bortolon, H. Frerichs, B. Grierson, J.D. Lore, T. Abrams, T.E. Evans, Y. Feng, R. Lunsford, R. Maingi, A. Nagy, R. Nazikian, D. Orlov, J. Ren, D.L. Rudakov, W.R. Wampler, H.Q. Wang
Format: Article
Language:English
Published: Elsevier 2021-03-01
Series:Nuclear Materials and Energy
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2352179121000016
Description
Summary:DIII-D L-mode experiments with local boron powder injection for real-time wall conditioning have been interpreted for the first time with the 3D plasma edge transport Monte Carlo code EMC3-EIRENE. Local B sourcing in plasma scenarios with upstream densities 1.5⋅1019m−3 and 2.2 MW heating results in a non-axisymmetric B distribution in the scrape-off layer (SOL) and on the divertor. The SOL frictional flows at high plasma density cause a strong inboard drag of injected impurities (≈90%), while lower background plasma densities tend to result in a more uniform distribution. The thermal forces prevent B deposition in the near SOL while the frictional force causes B fluxes to cover the divertor plasma-facing components in a region 7–10 cm beyond the strike line. Radiative dissipation occurs for B influxes above 1⋅1020s−1 and causes a moderate, non-axisymmetric reduction of the far SOL divertor heat fluxes. A comparison of top and midplane B injection shows no substantial difference in inboard vs. outboard asymmetries of the B distribution. On the other hand, erosion or recycling at the strike line may distribute the boron more uniformly in the SOL.
ISSN:2352-1791