Orthomodular and Skew Orthomodular Posets
We present the smallest non-lattice orthomodular poset and show that it is unique up to isomorphism. Since not every Boolean poset is orthomodular, we consider the class of skew orthomodular posets previously introduced by the first and third author under the name “generalized orthomodular posets”....
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-03-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/15/4/810 |
Summary: | We present the smallest non-lattice orthomodular poset and show that it is unique up to isomorphism. Since not every Boolean poset is orthomodular, we consider the class of skew orthomodular posets previously introduced by the first and third author under the name “generalized orthomodular posets”. We show that this class contains all Boolean posets and we study its subclass consisting of horizontal sums of Boolean posets. For this purpose, we introduce the concept of a compatibility relation and the so-called commutator of two elements. We show the relationship between these concepts and introduce a kind of ternary discriminator for horizontal sums of Boolean posets. Numerous examples illuminating these concepts and results are included in the paper. |
---|---|
ISSN: | 2073-8994 |