Atrial fibrillation prediction by combining ECG markers and CMR radiomics

Abstract Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, a...

Full description

Bibliographic Details
Main Authors: Esmeralda Ruiz Pujadas, Zahra Raisi-Estabragh, Liliana Szabo, Cristian Izquierdo Morcillo, Víctor M. Campello, Carlos Martin-Isla, Hajnalka Vago, Bela Merkely, Nicholas C. Harvey, Steffen E. Petersen, Karim Lekadir
Format: Article
Language:English
Published: Nature Portfolio 2022-11-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-022-21663-w
_version_ 1828197959228981248
author Esmeralda Ruiz Pujadas
Zahra Raisi-Estabragh
Liliana Szabo
Cristian Izquierdo Morcillo
Víctor M. Campello
Carlos Martin-Isla
Hajnalka Vago
Bela Merkely
Nicholas C. Harvey
Steffen E. Petersen
Karim Lekadir
author_facet Esmeralda Ruiz Pujadas
Zahra Raisi-Estabragh
Liliana Szabo
Cristian Izquierdo Morcillo
Víctor M. Campello
Carlos Martin-Isla
Hajnalka Vago
Bela Merkely
Nicholas C. Harvey
Steffen E. Petersen
Karim Lekadir
author_sort Esmeralda Ruiz Pujadas
collection DOAJ
description Abstract Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, an ECG recorded at a single time point may not detect individuals with paroxysmal AF. In this study, we developed machine learning models for discrimination of prevalent AF using a combination of image-derived radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-differential remodelling by building sex-specific models. Our integrative model including radiomics and ECG together resulted in a better performance than ECG alone, particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 0.88, p < 0.05) but adding radiomics features, the accuracy of the model was able to improve significantly. The sensitivity also increased considerably in women by adding the radiomics (0.68 vs 0.79, p < 0.05) having a higher detection of AF events. Our findings provide novel insights into AF-related electro-anatomic remodelling and its variations by sex. The integrative radiomics-ECG model also presents a potential novel approach for earlier detection of AF.
first_indexed 2024-04-12T10:29:18Z
format Article
id doaj.art-4ce0f2240d724f1681c2d270939b12e5
institution Directory Open Access Journal
issn 2045-2322
language English
last_indexed 2024-04-12T10:29:18Z
publishDate 2022-11-01
publisher Nature Portfolio
record_format Article
series Scientific Reports
spelling doaj.art-4ce0f2240d724f1681c2d270939b12e52022-12-22T03:36:53ZengNature PortfolioScientific Reports2045-23222022-11-0112111510.1038/s41598-022-21663-wAtrial fibrillation prediction by combining ECG markers and CMR radiomicsEsmeralda Ruiz Pujadas0Zahra Raisi-Estabragh1Liliana Szabo2Cristian Izquierdo Morcillo3Víctor M. Campello4Carlos Martin-Isla5Hajnalka Vago6Bela Merkely7Nicholas C. Harvey8Steffen E. Petersen9Karim Lekadir10Artificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de BarcelonaWilliam Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of LondonWilliam Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of LondonArtificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de BarcelonaArtificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de BarcelonaArtificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de BarcelonaSemmelweis University Heart and Vascular CenterSemmelweis University Heart and Vascular CenterMRC Lifecourse Epidemiology Centre, University of SouthamptonWilliam Harvey Research Institute, NIHR Barts Biomedical Research Centre, Queen Mary University of LondonArtificial Intelligence in Medicine Lab (BCN-AIM), Departament de Matemàtiques i Informàtica, Universitat de BarcelonaAbstract Atrial fibrillation (AF) is the most common cardiac arrhythmia. It is associated with a higher risk of important adverse health outcomes such as stroke and death. AF is linked to distinct electro-anatomic alterations. The main tool for AF diagnosis is the Electrocardiogram (ECG). However, an ECG recorded at a single time point may not detect individuals with paroxysmal AF. In this study, we developed machine learning models for discrimination of prevalent AF using a combination of image-derived radiomics phenotypes and ECG features. Thus, we characterize the phenotypes of prevalent AF in terms of ECG and imaging alterations. Moreover, we explore sex-differential remodelling by building sex-specific models. Our integrative model including radiomics and ECG together resulted in a better performance than ECG alone, particularly in women. ECG had a lower performance in women than men (AUC: 0.77 vs 0.88, p < 0.05) but adding radiomics features, the accuracy of the model was able to improve significantly. The sensitivity also increased considerably in women by adding the radiomics (0.68 vs 0.79, p < 0.05) having a higher detection of AF events. Our findings provide novel insights into AF-related electro-anatomic remodelling and its variations by sex. The integrative radiomics-ECG model also presents a potential novel approach for earlier detection of AF.https://doi.org/10.1038/s41598-022-21663-w
spellingShingle Esmeralda Ruiz Pujadas
Zahra Raisi-Estabragh
Liliana Szabo
Cristian Izquierdo Morcillo
Víctor M. Campello
Carlos Martin-Isla
Hajnalka Vago
Bela Merkely
Nicholas C. Harvey
Steffen E. Petersen
Karim Lekadir
Atrial fibrillation prediction by combining ECG markers and CMR radiomics
Scientific Reports
title Atrial fibrillation prediction by combining ECG markers and CMR radiomics
title_full Atrial fibrillation prediction by combining ECG markers and CMR radiomics
title_fullStr Atrial fibrillation prediction by combining ECG markers and CMR radiomics
title_full_unstemmed Atrial fibrillation prediction by combining ECG markers and CMR radiomics
title_short Atrial fibrillation prediction by combining ECG markers and CMR radiomics
title_sort atrial fibrillation prediction by combining ecg markers and cmr radiomics
url https://doi.org/10.1038/s41598-022-21663-w
work_keys_str_mv AT esmeraldaruizpujadas atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT zahraraisiestabragh atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT lilianaszabo atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT cristianizquierdomorcillo atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT victormcampello atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT carlosmartinisla atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT hajnalkavago atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT belamerkely atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT nicholascharvey atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT steffenepetersen atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics
AT karimlekadir atrialfibrillationpredictionbycombiningecgmarkersandcmrradiomics