Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery

The continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance and lev...

Full description

Bibliographic Details
Main Authors: Ana B. Pascual-Venteo, Jose L. Garcia, Katja Berger, José Estévez, Jorge Vicent, Adrián Pérez-Suay, Shari Van Wittenberghe, Jochem Verrelst
Format: Article
Language:English
Published: MDPI AG 2024-03-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/16/7/1211
_version_ 1827286561668988928
author Ana B. Pascual-Venteo
Jose L. Garcia
Katja Berger
José Estévez
Jorge Vicent
Adrián Pérez-Suay
Shari Van Wittenberghe
Jochem Verrelst
author_facet Ana B. Pascual-Venteo
Jose L. Garcia
Katja Berger
José Estévez
Jorge Vicent
Adrián Pérez-Suay
Shari Van Wittenberghe
Jochem Verrelst
author_sort Ana B. Pascual-Venteo
collection DOAJ
description The continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance and level 2 bottom-of-atmosphere (BOA) reflectance products. Exploiting TOA radiance data directly offers the advantage of bypassing the complex atmospheric correction step, where errors can propagate and compromise the subsequent retrieval process. Therefore, the objective of our study was to develop models capable of retrieving vegetation traits directly from TOA radiance data from imaging spectroscopy satellite missions. To achieve this, we constructed hybrid models based on radiative transfer model (RTM) simulated data, thereby employing the vegetation SCOPE RTM coupled with the atmosphere LibRadtran RTM in conjunction with Gaussian process regression (GPR). The retrieval evaluation focused on vegetation canopy traits, including the leaf area index (LAI), canopy chlorophyll content (CCC), canopy water content (CWC), the fraction of absorbed photosynthetically active radiation (FAPAR), and the fraction of vegetation cover (FVC). Employing band settings from the upcoming Copernicus Hyperspectral Imaging Mission (CHIME), two types of hybrid GPR models were assessed: (1) one trained at level 1 (L1) using TOA radiance data and (2) one trained at level 2 (L2) using BOA reflectance data. Both the TOA- and BOA-based GPR models were validated against in situ data with corresponding hyperspectral data obtained from field campaigns. The TOA-based hybrid GPR models revealed a range of performance from moderate to optimal results, thus reaching <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.92 (LAI), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.72 (CCC) and 0.68 (CWC), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.94 (FAPAR), and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.95 (FVC). To demonstrate the models’ applicability, the TOA- and BOA-based GPR models were subsequently applied to imagery from the scientific precursor missions PRISMA and EnMAP. The resulting trait maps showed sufficient consistency between the TOA- and BOA-based models, with relative errors between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> between 0.68 and 0.97). Altogether, these findings illuminate the path for the development and enhancement of machine learning hybrid models for the estimation of vegetation traits directly tailored at the TOA level.
first_indexed 2024-04-24T10:35:31Z
format Article
id doaj.art-4cee256037a248249168ae2ccc0df845
institution Directory Open Access Journal
issn 2072-4292
language English
last_indexed 2024-04-24T10:35:31Z
publishDate 2024-03-01
publisher MDPI AG
record_format Article
series Remote Sensing
spelling doaj.art-4cee256037a248249168ae2ccc0df8452024-04-12T13:25:38ZengMDPI AGRemote Sensing2072-42922024-03-01167121110.3390/rs16071211Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP ImageryAna B. Pascual-Venteo0Jose L. Garcia1Katja Berger2José Estévez3Jorge Vicent4Adrián Pérez-Suay5Shari Van Wittenberghe6Jochem Verrelst7Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainThe continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance and level 2 bottom-of-atmosphere (BOA) reflectance products. Exploiting TOA radiance data directly offers the advantage of bypassing the complex atmospheric correction step, where errors can propagate and compromise the subsequent retrieval process. Therefore, the objective of our study was to develop models capable of retrieving vegetation traits directly from TOA radiance data from imaging spectroscopy satellite missions. To achieve this, we constructed hybrid models based on radiative transfer model (RTM) simulated data, thereby employing the vegetation SCOPE RTM coupled with the atmosphere LibRadtran RTM in conjunction with Gaussian process regression (GPR). The retrieval evaluation focused on vegetation canopy traits, including the leaf area index (LAI), canopy chlorophyll content (CCC), canopy water content (CWC), the fraction of absorbed photosynthetically active radiation (FAPAR), and the fraction of vegetation cover (FVC). Employing band settings from the upcoming Copernicus Hyperspectral Imaging Mission (CHIME), two types of hybrid GPR models were assessed: (1) one trained at level 1 (L1) using TOA radiance data and (2) one trained at level 2 (L2) using BOA reflectance data. Both the TOA- and BOA-based GPR models were validated against in situ data with corresponding hyperspectral data obtained from field campaigns. The TOA-based hybrid GPR models revealed a range of performance from moderate to optimal results, thus reaching <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.92 (LAI), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.72 (CCC) and 0.68 (CWC), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.94 (FAPAR), and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.95 (FVC). To demonstrate the models’ applicability, the TOA- and BOA-based GPR models were subsequently applied to imagery from the scientific precursor missions PRISMA and EnMAP. The resulting trait maps showed sufficient consistency between the TOA- and BOA-based models, with relative errors between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> between 0.68 and 0.97). Altogether, these findings illuminate the path for the development and enhancement of machine learning hybrid models for the estimation of vegetation traits directly tailored at the TOA level.https://www.mdpi.com/2072-4292/16/7/1211top-of-atmosphereatmospheric correctionmachine learning modelsGaussian processesradiative transfer modelSCOPE
spellingShingle Ana B. Pascual-Venteo
Jose L. Garcia
Katja Berger
José Estévez
Jorge Vicent
Adrián Pérez-Suay
Shari Van Wittenberghe
Jochem Verrelst
Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
Remote Sensing
top-of-atmosphere
atmospheric correction
machine learning models
Gaussian processes
radiative transfer model
SCOPE
title Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
title_full Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
title_fullStr Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
title_full_unstemmed Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
title_short Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
title_sort gaussian process regression hybrid models for the top of atmosphere retrieval of vegetation traits applied to prisma and enmap imagery
topic top-of-atmosphere
atmospheric correction
machine learning models
Gaussian processes
radiative transfer model
SCOPE
url https://www.mdpi.com/2072-4292/16/7/1211
work_keys_str_mv AT anabpascualventeo gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT joselgarcia gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT katjaberger gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT joseestevez gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT jorgevicent gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT adrianperezsuay gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT sharivanwittenberghe gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery
AT jochemverrelst gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery