Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery
The continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance and lev...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-03-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/16/7/1211 |
_version_ | 1827286561668988928 |
---|---|
author | Ana B. Pascual-Venteo Jose L. Garcia Katja Berger José Estévez Jorge Vicent Adrián Pérez-Suay Shari Van Wittenberghe Jochem Verrelst |
author_facet | Ana B. Pascual-Venteo Jose L. Garcia Katja Berger José Estévez Jorge Vicent Adrián Pérez-Suay Shari Van Wittenberghe Jochem Verrelst |
author_sort | Ana B. Pascual-Venteo |
collection | DOAJ |
description | The continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance and level 2 bottom-of-atmosphere (BOA) reflectance products. Exploiting TOA radiance data directly offers the advantage of bypassing the complex atmospheric correction step, where errors can propagate and compromise the subsequent retrieval process. Therefore, the objective of our study was to develop models capable of retrieving vegetation traits directly from TOA radiance data from imaging spectroscopy satellite missions. To achieve this, we constructed hybrid models based on radiative transfer model (RTM) simulated data, thereby employing the vegetation SCOPE RTM coupled with the atmosphere LibRadtran RTM in conjunction with Gaussian process regression (GPR). The retrieval evaluation focused on vegetation canopy traits, including the leaf area index (LAI), canopy chlorophyll content (CCC), canopy water content (CWC), the fraction of absorbed photosynthetically active radiation (FAPAR), and the fraction of vegetation cover (FVC). Employing band settings from the upcoming Copernicus Hyperspectral Imaging Mission (CHIME), two types of hybrid GPR models were assessed: (1) one trained at level 1 (L1) using TOA radiance data and (2) one trained at level 2 (L2) using BOA reflectance data. Both the TOA- and BOA-based GPR models were validated against in situ data with corresponding hyperspectral data obtained from field campaigns. The TOA-based hybrid GPR models revealed a range of performance from moderate to optimal results, thus reaching <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.92 (LAI), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.72 (CCC) and 0.68 (CWC), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.94 (FAPAR), and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.95 (FVC). To demonstrate the models’ applicability, the TOA- and BOA-based GPR models were subsequently applied to imagery from the scientific precursor missions PRISMA and EnMAP. The resulting trait maps showed sufficient consistency between the TOA- and BOA-based models, with relative errors between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> between 0.68 and 0.97). Altogether, these findings illuminate the path for the development and enhancement of machine learning hybrid models for the estimation of vegetation traits directly tailored at the TOA level. |
first_indexed | 2024-04-24T10:35:31Z |
format | Article |
id | doaj.art-4cee256037a248249168ae2ccc0df845 |
institution | Directory Open Access Journal |
issn | 2072-4292 |
language | English |
last_indexed | 2024-04-24T10:35:31Z |
publishDate | 2024-03-01 |
publisher | MDPI AG |
record_format | Article |
series | Remote Sensing |
spelling | doaj.art-4cee256037a248249168ae2ccc0df8452024-04-12T13:25:38ZengMDPI AGRemote Sensing2072-42922024-03-01167121110.3390/rs16071211Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP ImageryAna B. Pascual-Venteo0Jose L. Garcia1Katja Berger2José Estévez3Jorge Vicent4Adrián Pérez-Suay5Shari Van Wittenberghe6Jochem Verrelst7Image Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainImage Processing Laboratory (IPL), Parc Científic, Universitat de València, 46980 Paterna, SpainThe continuous monitoring of the terrestrial Earth system by a growing number of optical satellite missions provides valuable insights into vegetation and cropland characteristics. Satellite missions typically provide different levels of data, such as level 1 top-of-atmosphere (TOA) radiance and level 2 bottom-of-atmosphere (BOA) reflectance products. Exploiting TOA radiance data directly offers the advantage of bypassing the complex atmospheric correction step, where errors can propagate and compromise the subsequent retrieval process. Therefore, the objective of our study was to develop models capable of retrieving vegetation traits directly from TOA radiance data from imaging spectroscopy satellite missions. To achieve this, we constructed hybrid models based on radiative transfer model (RTM) simulated data, thereby employing the vegetation SCOPE RTM coupled with the atmosphere LibRadtran RTM in conjunction with Gaussian process regression (GPR). The retrieval evaluation focused on vegetation canopy traits, including the leaf area index (LAI), canopy chlorophyll content (CCC), canopy water content (CWC), the fraction of absorbed photosynthetically active radiation (FAPAR), and the fraction of vegetation cover (FVC). Employing band settings from the upcoming Copernicus Hyperspectral Imaging Mission (CHIME), two types of hybrid GPR models were assessed: (1) one trained at level 1 (L1) using TOA radiance data and (2) one trained at level 2 (L2) using BOA reflectance data. Both the TOA- and BOA-based GPR models were validated against in situ data with corresponding hyperspectral data obtained from field campaigns. The TOA-based hybrid GPR models revealed a range of performance from moderate to optimal results, thus reaching <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.92 (LAI), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.72 (CCC) and 0.68 (CWC), <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.94 (FAPAR), and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> = 0.95 (FVC). To demonstrate the models’ applicability, the TOA- and BOA-based GPR models were subsequently applied to imagery from the scientific precursor missions PRISMA and EnMAP. The resulting trait maps showed sufficient consistency between the TOA- and BOA-based models, with relative errors between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4</mn><mo>%</mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>16</mn><mo>%</mo></mrow></semantics></math></inline-formula> (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>R</mi><mn>2</mn></msup></semantics></math></inline-formula> between 0.68 and 0.97). Altogether, these findings illuminate the path for the development and enhancement of machine learning hybrid models for the estimation of vegetation traits directly tailored at the TOA level.https://www.mdpi.com/2072-4292/16/7/1211top-of-atmosphereatmospheric correctionmachine learning modelsGaussian processesradiative transfer modelSCOPE |
spellingShingle | Ana B. Pascual-Venteo Jose L. Garcia Katja Berger José Estévez Jorge Vicent Adrián Pérez-Suay Shari Van Wittenberghe Jochem Verrelst Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery Remote Sensing top-of-atmosphere atmospheric correction machine learning models Gaussian processes radiative transfer model SCOPE |
title | Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery |
title_full | Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery |
title_fullStr | Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery |
title_full_unstemmed | Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery |
title_short | Gaussian Process Regression Hybrid Models for the Top-of-Atmosphere Retrieval of Vegetation Traits Applied to PRISMA and EnMAP Imagery |
title_sort | gaussian process regression hybrid models for the top of atmosphere retrieval of vegetation traits applied to prisma and enmap imagery |
topic | top-of-atmosphere atmospheric correction machine learning models Gaussian processes radiative transfer model SCOPE |
url | https://www.mdpi.com/2072-4292/16/7/1211 |
work_keys_str_mv | AT anabpascualventeo gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT joselgarcia gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT katjaberger gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT joseestevez gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT jorgevicent gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT adrianperezsuay gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT sharivanwittenberghe gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery AT jochemverrelst gaussianprocessregressionhybridmodelsforthetopofatmosphereretrievalofvegetationtraitsappliedtoprismaandenmapimagery |