Treatment of Oily Wastewater by the Optimization of Fe2O3 Calcination Temperatures in Innovative Bio-Electron-Fenton Microbial Fuel Cells
Due to the fact that Iron oxide (Fe2O3) is known to have a good effect on the photochemical reaction of catalysts, an investigation in this study into the enhancement of the degradation performance of bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) was carried out using three photocataly...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-03-01
|
Series: | Energies |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1073/11/3/565 |
Summary: | Due to the fact that Iron oxide (Fe2O3) is known to have a good effect on the photochemical reaction of catalysts, an investigation in this study into the enhancement of the degradation performance of bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) was carried out using three photocatalytic cathodes. These cathodes were produced at different calcination temperatures of Fe2O3 ranging from 500 °C to 900 °C for realizing their performance as photo catalysts within the cathodic chamber of an MFC, and they were compared for their ability to degrade oily wastewater. Results show that a suitable temperature for the calcination of iron oxide would have a significantly positive effect on the performance of Bio-E-Fenton MFCs. An optimal calcination temperature of 500 °C for Fe2O3 in the electrode material of the cathode was observed to produce a maximum power density of 52.5 mW/m2 and a chemical oxygen demand (COD) degradation rate of oily wastewater (catholyte) of 99.3% within one hour of operation. These novel findings will be useful for the improvement of the performance and applications of Bio-E-Fenton MFCs and their future applications in the field of wastewater treatment. |
---|---|
ISSN: | 1996-1073 |