Treatment of Oily Wastewater by the Optimization of Fe2O3 Calcination Temperatures in Innovative Bio-Electron-Fenton Microbial Fuel Cells

Due to the fact that Iron oxide (Fe2O3) is known to have a good effect on the photochemical reaction of catalysts, an investigation in this study into the enhancement of the degradation performance of bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) was carried out using three photocataly...

Full description

Bibliographic Details
Main Authors: Jung-Chen Wu, Wei-Mon Yan, Chin-Tsan Wang, Chen-Hao Wang, Yi-Hao Pai, Kai-Chin Wang, Yan-Ming Chen, Tzu-Hsuan Lan, Sangeetha Thangavel
Format: Article
Language:English
Published: MDPI AG 2018-03-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/11/3/565
Description
Summary:Due to the fact that Iron oxide (Fe2O3) is known to have a good effect on the photochemical reaction of catalysts, an investigation in this study into the enhancement of the degradation performance of bio-electro-Fenton microbial fuel cells (Bio-E-Fenton MFCs) was carried out using three photocatalytic cathodes. These cathodes were produced at different calcination temperatures of Fe2O3 ranging from 500 °C to 900 °C for realizing their performance as photo catalysts within the cathodic chamber of an MFC, and they were compared for their ability to degrade oily wastewater. Results show that a suitable temperature for the calcination of iron oxide would have a significantly positive effect on the performance of Bio-E-Fenton MFCs. An optimal calcination temperature of 500 °C for Fe2O3 in the electrode material of the cathode was observed to produce a maximum power density of 52.5 mW/m2 and a chemical oxygen demand (COD) degradation rate of oily wastewater (catholyte) of 99.3% within one hour of operation. These novel findings will be useful for the improvement of the performance and applications of Bio-E-Fenton MFCs and their future applications in the field of wastewater treatment.
ISSN:1996-1073