Effect of Arc Length on Oxygen Content and Mechanical Properties of Weld Metal during Pulsed GMAW

Pulsed gas metal arc weld (GMAW) was widely used for the advantages of controllable heat input, all-position welding, and no spatter. In order to obtain an ideal welding process, the stability of the arc length was studied in many researches, but the influence of arc length on the properties of weld...

Full description

Bibliographic Details
Main Authors: Jiachen Xu, Xiaoxiao Zhou, Dawei Zhu
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/2/176
Description
Summary:Pulsed gas metal arc weld (GMAW) was widely used for the advantages of controllable heat input, all-position welding, and no spatter. In order to obtain an ideal welding process, the stability of the arc length was studied in many researches, but the influence of arc length on the properties of weld metal was ignored. In this paper, the effect of arc length on oxygen content and mechanical properties of weld metal during pulsed GMAW was studied. Q690 high strength steel was selected as the base metal, and ER69-G solid wire, with a diameter of 1.2 mm, was used as the electrode wire. Additionally, the shielding gas and the wire feed rate were 82% Ar + 18% CO<sub>2</sub> and 4 m/min, respectively. The results showed that as the arc length raised from 2.9 mm to 9.2 mm, the oxidation reacted more completely in the droplet transfer zone, and the oxygen content of the weld metal increased significantly. The tensile strength of the weld metal reduced but the −40 °C impact energy heightened. Due to the longer arc, the proportion of acicular ferrite (AF) in the microstructure decreased, but the proportion of lath bainite (LB) and granular bainite (GB) decreased. The higher oxygen content of weld metal was useful for the formation of inclusions, which promoted the nucleation of acicular ferrite and dimples, contributing to the growth of plasticity and toughness of weld metal.
ISSN:2073-4352