Noise variance estimation for Kalman filter

In this paper, we propose an algorithm that evaluates noise variance with a numerical integration method. For noise variance estimation, we use Krogh method with a variable integration step. In line with common practice, we limit our study to fourth-order method. First, we perform simulation tests f...

Full description

Bibliographic Details
Main Authors: Beniak Ryszard, Gudzenko Oleksandr, Pyka Tomasz
Format: Article
Language:English
Published: EDP Sciences 2017-01-01
Series:E3S Web of Conferences
Online Access:https://doi.org/10.1051/e3sconf/20171901043
_version_ 1818599158892724224
author Beniak Ryszard
Gudzenko Oleksandr
Pyka Tomasz
author_facet Beniak Ryszard
Gudzenko Oleksandr
Pyka Tomasz
author_sort Beniak Ryszard
collection DOAJ
description In this paper, we propose an algorithm that evaluates noise variance with a numerical integration method. For noise variance estimation, we use Krogh method with a variable integration step. In line with common practice, we limit our study to fourth-order method. First, we perform simulation tests for randomly generated signals, related to the transition state and steady state. Next, we formulate three methodologies (research hypotheses) of noise variance estimation, and then compare their efficiency.
first_indexed 2024-12-16T12:15:09Z
format Article
id doaj.art-4d3127e5d5044eba89febeb117368854
institution Directory Open Access Journal
issn 2267-1242
language English
last_indexed 2024-12-16T12:15:09Z
publishDate 2017-01-01
publisher EDP Sciences
record_format Article
series E3S Web of Conferences
spelling doaj.art-4d3127e5d5044eba89febeb1173688542022-12-21T22:32:07ZengEDP SciencesE3S Web of Conferences2267-12422017-01-01190104310.1051/e3sconf/20171901043e3sconf_eems2017_01043Noise variance estimation for Kalman filterBeniak RyszardGudzenko OleksandrPyka TomaszIn this paper, we propose an algorithm that evaluates noise variance with a numerical integration method. For noise variance estimation, we use Krogh method with a variable integration step. In line with common practice, we limit our study to fourth-order method. First, we perform simulation tests for randomly generated signals, related to the transition state and steady state. Next, we formulate three methodologies (research hypotheses) of noise variance estimation, and then compare their efficiency.https://doi.org/10.1051/e3sconf/20171901043
spellingShingle Beniak Ryszard
Gudzenko Oleksandr
Pyka Tomasz
Noise variance estimation for Kalman filter
E3S Web of Conferences
title Noise variance estimation for Kalman filter
title_full Noise variance estimation for Kalman filter
title_fullStr Noise variance estimation for Kalman filter
title_full_unstemmed Noise variance estimation for Kalman filter
title_short Noise variance estimation for Kalman filter
title_sort noise variance estimation for kalman filter
url https://doi.org/10.1051/e3sconf/20171901043
work_keys_str_mv AT beniakryszard noisevarianceestimationforkalmanfilter
AT gudzenkooleksandr noisevarianceestimationforkalmanfilter
AT pykatomasz noisevarianceestimationforkalmanfilter