Sequestered capture and desorption of hexavalent chromium from solution and textile wastewater onto low cost Heinsia crinita seed coat biomass
Abstract Due to the high cost associated with the treatment of effluents containing heavy metals in the environment, the continuous untreated release of effluent containing chromium from textile industries has resulted in several adverse effects to plants, ecological systems and humans. This researc...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2019-12-01
|
Series: | Applied Water Science |
Subjects: | |
Online Access: | https://doi.org/10.1007/s13201-019-1114-6 |
Summary: | Abstract Due to the high cost associated with the treatment of effluents containing heavy metals in the environment, the continuous untreated release of effluent containing chromium from textile industries has resulted in several adverse effects to plants, ecological systems and humans. This research therefore focused on the use of a low cost, biodegradable Heinsia crinita seed coat (HCSC) material for the biosorption of chromium(VI) from aqueous and textile contaminated effluent. The biosorbent was characterized for specific surface area, surface morphology, pH point of zero charge and surface functional groups. Operational variables influences such as biosorbent dose, pH, temperature, initial Cr(VI) ion concentration and contact time on biosorption process was tested. The optimum biosorption parameter was obtained at pH 2.0, adsorbent dosage 0.25 g and contact time of 30 min. From sorption analysis, the pseudo-second-order model best described the attenuation kinetics. Concerning biosorption equilibrium, the results suggested that the adsorption isotherm obeyed the Freundlich model. Langmuir maximum monolayer biosorption capacity of 231.7 mg/g was higher than most biosorbents for Cr(VI) ion. The thermodynamic data showed a physical, spontaneous and endothermic biosorption process. HCSC showed high percentage desorption > 90% using 0.1 M HNO3 and was efficient after three cycles of regeneration studies. The results showed HCSC biomass as a suitable candidate for abstraction of Cr(VI) ion from contaminated solution and textile effluent. |
---|---|
ISSN: | 2190-5487 2190-5495 |