Miro1-dependent mitochondrial dynamics in parvalbumin interneurons

The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importa...

Full description

Bibliographic Details
Main Authors: Georgina Kontou, Pantelis Antonoudiou, Marina Podpolny, Blanka R Szulc, I Lorena Arancibia-Carcamo, Nathalie F Higgs, Guillermo Lopez-Domenech, Patricia C Salinas, Edward O Mann, Josef T Kittler
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2021-06-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/65215
Description
Summary:The spatiotemporal distribution of mitochondria is crucial for precise ATP provision and calcium buffering required to support neuronal signaling. Fast-spiking GABAergic interneurons expressing parvalbumin (PV+) have a high mitochondrial content reflecting their large energy utilization. The importance for correct trafficking and precise mitochondrial positioning remains poorly elucidated in inhibitory neurons. Miro1 is a Ca²+-sensing adaptor protein that links mitochondria to the trafficking apparatus, for their microtubule-dependent transport along axons and dendrites, in order to meet the metabolic and Ca2+-buffering requirements of the cell. Here, we explore the role of Miro1 in PV+ interneurons and how changes in mitochondrial trafficking could alter network activity in the mouse brain. By employing live and fixed imaging, we found that the impairments in Miro1-directed trafficking in PV+ interneurons altered their mitochondrial distribution and axonal arborization, while PV+ interneuron-mediated inhibition remained intact. These changes were accompanied by an increase in the ex vivo hippocampal γ-oscillation (30–80 Hz) frequency and promoted anxiolysis. Our findings show that precise regulation of mitochondrial dynamics in PV+ interneurons is crucial for proper neuronal signaling and network synchronization.
ISSN:2050-084X