Microparticle Production of Active Pharmaceutical Ingredient Using Supercritical Antisolvent Process: A Case Study of Allopurinol

Allopurinol is a relatively water-insoluble drug and, consequently, its efficacy was frequently limited by the dissolution or solubility phenomena. The purpose of this study was to improve the solid-state properties and dissolution behavior of allopurinol via a supercritical antisolvent (SAS) proces...

Full description

Bibliographic Details
Main Authors: Salal Hasan Khudaida, Wei-Kai Wang, Wei-Yi Wu, Chie-Shaan Su
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Crystals
Subjects:
Online Access:https://www.mdpi.com/2073-4352/12/7/922
Description
Summary:Allopurinol is a relatively water-insoluble drug and, consequently, its efficacy was frequently limited by the dissolution or solubility phenomena. The purpose of this study was to improve the solid-state properties and dissolution behavior of allopurinol via a supercritical antisolvent (SAS) process using CO<sub>2</sub> as an antisolvent. The effects of operating parameters: temperature (35–55 °C), pressure (80–100 bar), solution concentration (8–15 mg/mL), CO<sub>2</sub> flow rate (2–4 L/min), and solution flow rate (0.25–0.50 mL/min) were studied. Moreover, the physical properties of unprocessed and SAS-processed allopurinol were analyzed by SEM, FTIR, DSC, TGA, and PXRD. The dissolution rate of unprocessed and SAS-processed allopurinol was also investigated and compared. In this case study, allopurinol was effectively micronized from 15.3 μm to 1.35 μm at the optimal operating condition. The results verify that the solid-state properties and dissolution rate of allopurinol can be controlled and improved via the micronization process by using SAS technology.
ISSN:2073-4352