Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.

In the current study, a novel approach combining quantile regression with nonlinear mixed-effects (<i>QR-NLME</i>) modeling was applied to predict the maximum crown width (<i>cw<sub>max</sub></i>) of three economically important forest species—the European beech (...

Full description

Bibliographic Details
Main Authors: Dimitrios I. Raptis, Vassiliki Kazana, Stavros Kechagioglou, Angelos Kazaklis, Christos Stamatiou, Dimitra Papadopoulou, Thekla Tsitsoni
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Forests
Subjects:
Online Access:https://www.mdpi.com/1999-4907/13/4/499
_version_ 1797446343158923264
author Dimitrios I. Raptis
Vassiliki Kazana
Stavros Kechagioglou
Angelos Kazaklis
Christos Stamatiou
Dimitra Papadopoulou
Thekla Tsitsoni
author_facet Dimitrios I. Raptis
Vassiliki Kazana
Stavros Kechagioglou
Angelos Kazaklis
Christos Stamatiou
Dimitra Papadopoulou
Thekla Tsitsoni
author_sort Dimitrios I. Raptis
collection DOAJ
description In the current study, a novel approach combining quantile regression with nonlinear mixed-effects (<i>QR-NLME</i>) modeling was applied to predict the maximum crown width (<i>cw<sub>max</sub></i>) of three economically important forest species—the European beech (<i>Fagus sylvatica</i> L.), the black pine (<i>Pinus nigra</i> Arn.), and the Calabrian pine (<i>Pinus brutia</i> Ten.) at tree level. A power <i>QR-NLME</i> model was fitted first to a dataset including 1414 European beech trees obtained from 29 randomly distributed sample plots, 770 black pine trees from 25 sample plots, and 1880 Calabrian pine trees from 41 sample plots in Greece, to predict the <i>cw<sub>max</sub></i> at tree level. Additionally, a nonlinear mixed-effects model (<i>NLME</i>) was fitted to the same dataset to predict the average crown width at tree level for all species. In the second stage, the crown competition factor (<i>CCF</i>) was estimated based on the population average response of the <i>cw<sub>max</sub></i> predictions. The proposed approach presented sound results when compared with the outcomes of relevant models from other regions fitted to open-grown tree data, and therefore, it can be well implemented on clustered data structures, in cases of absence of open-grown tree data.
first_indexed 2024-03-09T13:40:13Z
format Article
id doaj.art-4d46560b2da043e3a6098dd69c79d9a8
institution Directory Open Access Journal
issn 1999-4907
language English
last_indexed 2024-03-09T13:40:13Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Forests
spelling doaj.art-4d46560b2da043e3a6098dd69c79d9a82023-11-30T21:07:55ZengMDPI AGForests1999-49072022-03-0113449910.3390/f13040499Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.Dimitrios I. Raptis0Vassiliki Kazana1Stavros Kechagioglou2Angelos Kazaklis3Christos Stamatiou4Dimitra Papadopoulou5Thekla Tsitsoni6Department of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, GreeceDepartment of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, GreeceDepartment of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 262, 54124 Thessaloniki, GreeceOLYMPOS-Centre for Integrated Environmental Management, Kalamaria, 55132 Thessaloniki, GreeceDepartment of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, GreeceDepartment of Forest and Natural Environment Sciences, International Hellenic University, 66100 Drama, GreeceDepartment of Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 262, 54124 Thessaloniki, GreeceIn the current study, a novel approach combining quantile regression with nonlinear mixed-effects (<i>QR-NLME</i>) modeling was applied to predict the maximum crown width (<i>cw<sub>max</sub></i>) of three economically important forest species—the European beech (<i>Fagus sylvatica</i> L.), the black pine (<i>Pinus nigra</i> Arn.), and the Calabrian pine (<i>Pinus brutia</i> Ten.) at tree level. A power <i>QR-NLME</i> model was fitted first to a dataset including 1414 European beech trees obtained from 29 randomly distributed sample plots, 770 black pine trees from 25 sample plots, and 1880 Calabrian pine trees from 41 sample plots in Greece, to predict the <i>cw<sub>max</sub></i> at tree level. Additionally, a nonlinear mixed-effects model (<i>NLME</i>) was fitted to the same dataset to predict the average crown width at tree level for all species. In the second stage, the crown competition factor (<i>CCF</i>) was estimated based on the population average response of the <i>cw<sub>max</sub></i> predictions. The proposed approach presented sound results when compared with the outcomes of relevant models from other regions fitted to open-grown tree data, and therefore, it can be well implemented on clustered data structures, in cases of absence of open-grown tree data.https://www.mdpi.com/1999-4907/13/4/499stochastic approximation of the expectation-maximization algorithmcrown competition factorstand densityforest management
spellingShingle Dimitrios I. Raptis
Vassiliki Kazana
Stavros Kechagioglou
Angelos Kazaklis
Christos Stamatiou
Dimitra Papadopoulou
Thekla Tsitsoni
Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.
Forests
stochastic approximation of the expectation-maximization algorithm
crown competition factor
stand density
forest management
title Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.
title_full Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.
title_fullStr Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.
title_full_unstemmed Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.
title_short Nonlinear Quantile Mixed-Effects Models for Prediction of the Maximum Crown Width of <i>Fagus sylvatica</i> L., <i>Pinus nigra</i> Arn. and <i>Pinus brutia</i> Ten.
title_sort nonlinear quantile mixed effects models for prediction of the maximum crown width of i fagus sylvatica i l i pinus nigra i arn and i pinus brutia i ten
topic stochastic approximation of the expectation-maximization algorithm
crown competition factor
stand density
forest management
url https://www.mdpi.com/1999-4907/13/4/499
work_keys_str_mv AT dimitriosiraptis nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten
AT vassilikikazana nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten
AT stavroskechagioglou nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten
AT angeloskazaklis nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten
AT christosstamatiou nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten
AT dimitrapapadopoulou nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten
AT theklatsitsoni nonlinearquantilemixedeffectsmodelsforpredictionofthemaximumcrownwidthofifagussylvaticailipinusnigraiarnandipinusbrutiaiten