Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles

This papers introduces an analytic method to define multistage launcher trajectories to determine the payload mass that can be inserted in orbits of different semimajor axes and inclinations. This method can evaluate the gravity loss, which is the main term to be subtracted to the Tziolkowski evalua...

Full description

Bibliographic Details
Main Authors: Paolo Teofilatto, Stefano Carletta, Mauro Pontani
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/11/5685
_version_ 1797494041652232192
author Paolo Teofilatto
Stefano Carletta
Mauro Pontani
author_facet Paolo Teofilatto
Stefano Carletta
Mauro Pontani
author_sort Paolo Teofilatto
collection DOAJ
description This papers introduces an analytic method to define multistage launcher trajectories to determine the payload mass that can be inserted in orbits of different semimajor axes and inclinations. This method can evaluate the gravity loss, which is the main term to be subtracted to the Tziolkowski evaluation of the velocity provided by the thrust of a launcher. In the method, the trajectories are dependent on two parameters only: the final flight-path angle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> at the end of the gravity-turn arc of the launcher trajectory and the duration <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>c</mi></msub></semantics></math></inline-formula> of the coasting arc following the gravity-turn phase. The analytic formulas for the gravity-turn phase, being solutions of differential equations with a singularity, allow us to identify the trajectory with a required final flight-path angle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> in infinite solutions with the same initial vertical launch condition. This can also drive the selection of the parameters of the pitch manoeuvre needed to turn the launcher from the initial vertical arc. For any pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>c</mi></msub></semantics></math></inline-formula>, a launcher trajectory is determined. A numerical solver is used to identify the values <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>c</mi></msub></semantics></math></inline-formula>, allowing for the insertion of the payload mass into the required orbit. The analytic method is compared with a numerical code including the drag effect, which is the only effect overlooked in the analytic formulas. The analytical method is proven to predict the payload mass with an error never exceeding the 10% of the actual payload mass, found through numerical propagation.
first_indexed 2024-03-10T01:28:37Z
format Article
id doaj.art-4d47016e1ef74d58abfceeaa753ef75a
institution Directory Open Access Journal
issn 2076-3417
language English
last_indexed 2024-03-10T01:28:37Z
publishDate 2022-06-01
publisher MDPI AG
record_format Article
series Applied Sciences
spelling doaj.art-4d47016e1ef74d58abfceeaa753ef75a2023-11-23T13:46:08ZengMDPI AGApplied Sciences2076-34172022-06-011211568510.3390/app12115685Analytic Derivation of Ascent Trajectories and Performance of Launch VehiclesPaolo Teofilatto0Stefano Carletta1Mauro Pontani2School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, 00138 Rome, ItalySchool of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, 00138 Rome, ItalyDepartment of Astronautical, Electrical, and Energy Engineering, Sapienza University of Rome, Via Salaria 851, 00138 Rome, ItalyThis papers introduces an analytic method to define multistage launcher trajectories to determine the payload mass that can be inserted in orbits of different semimajor axes and inclinations. This method can evaluate the gravity loss, which is the main term to be subtracted to the Tziolkowski evaluation of the velocity provided by the thrust of a launcher. In the method, the trajectories are dependent on two parameters only: the final flight-path angle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> at the end of the gravity-turn arc of the launcher trajectory and the duration <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>c</mi></msub></semantics></math></inline-formula> of the coasting arc following the gravity-turn phase. The analytic formulas for the gravity-turn phase, being solutions of differential equations with a singularity, allow us to identify the trajectory with a required final flight-path angle <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> in infinite solutions with the same initial vertical launch condition. This can also drive the selection of the parameters of the pitch manoeuvre needed to turn the launcher from the initial vertical arc. For any pair <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>c</mi></msub></semantics></math></inline-formula>, a launcher trajectory is determined. A numerical solver is used to identify the values <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mi>f</mi></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>t</mi><mi>c</mi></msub></semantics></math></inline-formula>, allowing for the insertion of the payload mass into the required orbit. The analytic method is compared with a numerical code including the drag effect, which is the only effect overlooked in the analytic formulas. The analytical method is proven to predict the payload mass with an error never exceeding the 10% of the actual payload mass, found through numerical propagation.https://www.mdpi.com/2076-3417/12/11/5685multistage launch vehiclesascent trajectory optimizationanalytical performance evaluationrocket staging
spellingShingle Paolo Teofilatto
Stefano Carletta
Mauro Pontani
Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles
Applied Sciences
multistage launch vehicles
ascent trajectory optimization
analytical performance evaluation
rocket staging
title Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles
title_full Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles
title_fullStr Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles
title_full_unstemmed Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles
title_short Analytic Derivation of Ascent Trajectories and Performance of Launch Vehicles
title_sort analytic derivation of ascent trajectories and performance of launch vehicles
topic multistage launch vehicles
ascent trajectory optimization
analytical performance evaluation
rocket staging
url https://www.mdpi.com/2076-3417/12/11/5685
work_keys_str_mv AT paoloteofilatto analyticderivationofascenttrajectoriesandperformanceoflaunchvehicles
AT stefanocarletta analyticderivationofascenttrajectoriesandperformanceoflaunchvehicles
AT mauropontani analyticderivationofascenttrajectoriesandperformanceoflaunchvehicles