Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART

<p>Marine biogenic particle contributions to atmospheric aerosol concentrations are not well understood though they are important for determining cloud optical and cloud-nucleating properties. Here we examine the relationship between marine aerosol measurements (with satellites and model field...

Full description

Bibliographic Details
Main Authors: K. J. Sanchez, B. Zhang, H. Liu, G. Saliba, C.-L. Chen, S. L. Lewis, L. M. Russell, M. A. Shook, E. C. Crosbie, L. D. Ziemba, M. D. Brown, T. J. Shingler, C. E. Robinson, E. B. Wiggins, K. L. Thornhill, E. L. Winstead, C. Jordan, P. K. Quinn, T. S. Bates, J. Porter, T. G. Bell, E. S. Saltzman, M. J. Behrenfeld, R. H. Moore
Format: Article
Language:English
Published: Copernicus Publications 2021-01-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/831/2021/acp-21-831-2021.pdf
_version_ 1818662424292622336
author K. J. Sanchez
K. J. Sanchez
B. Zhang
H. Liu
G. Saliba
C.-L. Chen
S. L. Lewis
L. M. Russell
M. A. Shook
E. C. Crosbie
E. C. Crosbie
L. D. Ziemba
M. D. Brown
M. D. Brown
T. J. Shingler
C. E. Robinson
C. E. Robinson
E. B. Wiggins
E. B. Wiggins
K. L. Thornhill
K. L. Thornhill
E. L. Winstead
E. L. Winstead
C. Jordan
C. Jordan
P. K. Quinn
T. S. Bates
T. S. Bates
J. Porter
T. G. Bell
T. G. Bell
E. S. Saltzman
M. J. Behrenfeld
R. H. Moore
author_facet K. J. Sanchez
K. J. Sanchez
B. Zhang
H. Liu
G. Saliba
C.-L. Chen
S. L. Lewis
L. M. Russell
M. A. Shook
E. C. Crosbie
E. C. Crosbie
L. D. Ziemba
M. D. Brown
M. D. Brown
T. J. Shingler
C. E. Robinson
C. E. Robinson
E. B. Wiggins
E. B. Wiggins
K. L. Thornhill
K. L. Thornhill
E. L. Winstead
E. L. Winstead
C. Jordan
C. Jordan
P. K. Quinn
T. S. Bates
T. S. Bates
J. Porter
T. G. Bell
T. G. Bell
E. S. Saltzman
M. J. Behrenfeld
R. H. Moore
author_sort K. J. Sanchez
collection DOAJ
description <p>Marine biogenic particle contributions to atmospheric aerosol concentrations are not well understood though they are important for determining cloud optical and cloud-nucleating properties. Here we examine the relationship between marine aerosol measurements (with satellites and model fields of ocean biology) and meteorological variables during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). NAAMES consisted of four field campaigns between November 2015 and April 2018 that aligned with the four major phases of the annual phytoplankton bloom cycle. The FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model is used to spatiotemporally connect these variables to ship-based aerosol and dimethyl sulfide (DMS) observations. We find that correlations between some aerosol measurements with satellite-measured and modeled variables increase with increasing trajectory length, indicating that biological and meteorological processes over the air mass history are influential for measured particle properties and that using only spatially coincident data would miss correlative connections that are lagged in time. In particular, the marine non-refractory organic aerosol mass correlates with modeled marine net primary production when weighted by 5 d air mass trajectory residence time (<span class="inline-formula"><i>r</i>=0.62</span>). This result indicates that non-refractory organic aerosol mass is influenced by biogenic volatile organic compound (VOC) emissions that are typically produced through bacterial degradation of dissolved organic matter, zooplankton grazing on marine phytoplankton, and as a by-product of photosynthesis by phytoplankton stocks during advection into the region. This is further supported by the correlation of non-refractory organic mass with 2 d residence-time-weighted chlorophyll <span class="inline-formula"><i>a</i></span> (<span class="inline-formula"><i>r</i>=0.39</span>), a proxy for phytoplankton abundance, and 5 d residence-time-weighted downward shortwave forcing (<span class="inline-formula"><i>r</i>=0.58</span>), a requirement for photosynthesis. In contrast, DMS (formed through biological processes in the seawater) and primary marine aerosol (PMA) concentrations showed better correlations with explanatory biological and meteorological variables weighted with shorter air mass residence times, which reflects their localized origin as primary emissions. Aerosol<span id="page832"/> submicron number and mass negatively correlate with sea surface wind speed. The negative correlation is attributed to enhanced PMA concentrations under higher wind speed conditions. We hypothesized that the elevated total particle surface area associated with high PMA concentrations leads to enhanced rates of condensation of VOC oxidation products onto PMA. Given the high deposition velocity of PMA relative to submicron aerosol, PMA can limit the accumulation of secondary aerosol mass. This study provides observational evidence for connections between marine aerosols and underlying ocean biology through complex secondary formation processes, emphasizing the need to consider air mass history in future analyses.</p>
first_indexed 2024-12-17T05:00:44Z
format Article
id doaj.art-4d594d903b0841b79613c5f755bafe13
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-17T05:00:44Z
publishDate 2021-01-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-4d594d903b0841b79613c5f755bafe132022-12-21T22:02:33ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-01-012183185110.5194/acp-21-831-2021Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPARTK. J. Sanchez0K. J. Sanchez1B. Zhang2H. Liu3G. Saliba4C.-L. Chen5S. L. Lewis6L. M. Russell7M. A. Shook8E. C. Crosbie9E. C. Crosbie10L. D. Ziemba11M. D. Brown12M. D. Brown13T. J. Shingler14C. E. Robinson15C. E. Robinson16E. B. Wiggins17E. B. Wiggins18K. L. Thornhill19K. L. Thornhill20E. L. Winstead21E. L. Winstead22C. Jordan23C. Jordan24P. K. Quinn25T. S. Bates26T. S. Bates27J. Porter28T. G. Bell29T. G. Bell30E. S. Saltzman31M. J. Behrenfeld32R. H. Moore33NASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, USANASA Langley Research Center, Hampton, VA, USANational Institute of Aerospace, Hampton, VA, USANational Institute of Aerospace, Hampton, VA, USAScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USAScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USAScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USAScripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USAScience Systems and Applications, Inc., Hampton, VA, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USAScience Systems and Applications, Inc., Hampton, VA, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USAScience Systems and Applications, Inc., Hampton, VA, USANASA Postdoctoral Program, Universities Space Research Association, Columbia, MD, USANASA Langley Research Center, Hampton, VA, USANASA Langley Research Center, Hampton, VA, USAScience Systems and Applications, Inc., Hampton, VA, USANASA Langley Research Center, Hampton, VA, USAScience Systems and Applications, Inc., Hampton, VA, USANASA Langley Research Center, Hampton, VA, USANational Institute of Aerospace, Hampton, VA, USAPacific Marine Environmental Laboratory, NOAA, Seattle, WA, USAPacific Marine Environmental Laboratory, NOAA, Seattle, WA, USAJoint Institute for the Study of the Atmosphere and Ocean (JISAO), University of Washington, Seattle, WA, USAThe Department of Earth System Science, University of California, Irvine, CA, USAPlymouth Marine Laboratory, Prospect Place, Plymouth, United KingdomThe Department of Earth System Science, University of California, Irvine, CA, USAThe Department of Earth System Science, University of California, Irvine, CA, USADepartment of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USANASA Langley Research Center, Hampton, VA, USA<p>Marine biogenic particle contributions to atmospheric aerosol concentrations are not well understood though they are important for determining cloud optical and cloud-nucleating properties. Here we examine the relationship between marine aerosol measurements (with satellites and model fields of ocean biology) and meteorological variables during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). NAAMES consisted of four field campaigns between November 2015 and April 2018 that aligned with the four major phases of the annual phytoplankton bloom cycle. The FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model is used to spatiotemporally connect these variables to ship-based aerosol and dimethyl sulfide (DMS) observations. We find that correlations between some aerosol measurements with satellite-measured and modeled variables increase with increasing trajectory length, indicating that biological and meteorological processes over the air mass history are influential for measured particle properties and that using only spatially coincident data would miss correlative connections that are lagged in time. In particular, the marine non-refractory organic aerosol mass correlates with modeled marine net primary production when weighted by 5 d air mass trajectory residence time (<span class="inline-formula"><i>r</i>=0.62</span>). This result indicates that non-refractory organic aerosol mass is influenced by biogenic volatile organic compound (VOC) emissions that are typically produced through bacterial degradation of dissolved organic matter, zooplankton grazing on marine phytoplankton, and as a by-product of photosynthesis by phytoplankton stocks during advection into the region. This is further supported by the correlation of non-refractory organic mass with 2 d residence-time-weighted chlorophyll <span class="inline-formula"><i>a</i></span> (<span class="inline-formula"><i>r</i>=0.39</span>), a proxy for phytoplankton abundance, and 5 d residence-time-weighted downward shortwave forcing (<span class="inline-formula"><i>r</i>=0.58</span>), a requirement for photosynthesis. In contrast, DMS (formed through biological processes in the seawater) and primary marine aerosol (PMA) concentrations showed better correlations with explanatory biological and meteorological variables weighted with shorter air mass residence times, which reflects their localized origin as primary emissions. Aerosol<span id="page832"/> submicron number and mass negatively correlate with sea surface wind speed. The negative correlation is attributed to enhanced PMA concentrations under higher wind speed conditions. We hypothesized that the elevated total particle surface area associated with high PMA concentrations leads to enhanced rates of condensation of VOC oxidation products onto PMA. Given the high deposition velocity of PMA relative to submicron aerosol, PMA can limit the accumulation of secondary aerosol mass. This study provides observational evidence for connections between marine aerosols and underlying ocean biology through complex secondary formation processes, emphasizing the need to consider air mass history in future analyses.</p>https://acp.copernicus.org/articles/21/831/2021/acp-21-831-2021.pdf
spellingShingle K. J. Sanchez
K. J. Sanchez
B. Zhang
H. Liu
G. Saliba
C.-L. Chen
S. L. Lewis
L. M. Russell
M. A. Shook
E. C. Crosbie
E. C. Crosbie
L. D. Ziemba
M. D. Brown
M. D. Brown
T. J. Shingler
C. E. Robinson
C. E. Robinson
E. B. Wiggins
E. B. Wiggins
K. L. Thornhill
K. L. Thornhill
E. L. Winstead
E. L. Winstead
C. Jordan
C. Jordan
P. K. Quinn
T. S. Bates
T. S. Bates
J. Porter
T. G. Bell
T. G. Bell
E. S. Saltzman
M. J. Behrenfeld
R. H. Moore
Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART
Atmospheric Chemistry and Physics
title Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART
title_full Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART
title_fullStr Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART
title_full_unstemmed Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART
title_short Linking marine phytoplankton emissions, meteorological processes, and downwind particle properties with FLEXPART
title_sort linking marine phytoplankton emissions meteorological processes and downwind particle properties with flexpart
url https://acp.copernicus.org/articles/21/831/2021/acp-21-831-2021.pdf
work_keys_str_mv AT kjsanchez linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT kjsanchez linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT bzhang linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT hliu linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT gsaliba linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT clchen linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT sllewis linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT lmrussell linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT mashook linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT eccrosbie linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT eccrosbie linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT ldziemba linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT mdbrown linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT mdbrown linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT tjshingler linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT cerobinson linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT cerobinson linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT ebwiggins linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT ebwiggins linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT klthornhill linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT klthornhill linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT elwinstead linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT elwinstead linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT cjordan linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT cjordan linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT pkquinn linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT tsbates linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT tsbates linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT jporter linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT tgbell linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT tgbell linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT essaltzman linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT mjbehrenfeld linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart
AT rhmoore linkingmarinephytoplanktonemissionsmeteorologicalprocessesanddownwindparticlepropertieswithflexpart