An Extension of Gregus Fixed Point Theorem
<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inl...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2007-01-01
|
Series: | Fixed Point Theory and Applications |
Online Access: | http://www.fixedpointtheoryandapplications.com/content/2007/078628 |
_version_ | 1818462108007792640 |
---|---|
author | Olaleru JO Akewe H |
author_facet | Olaleru JO Akewe H |
author_sort | Olaleru JO |
collection | DOAJ |
description | <p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2007-078628-i3.gif"/></inline-formula> a mapping that satisfies <inline-formula><graphic file="1687-1812-2007-078628-i4.gif"/></inline-formula> for all <inline-formula><graphic file="1687-1812-2007-078628-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-078628-i6.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i8.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-078628-i11.gif"/></inline-formula>. Then <inline-formula><graphic file="1687-1812-2007-078628-i12.gif"/></inline-formula> has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of <inline-formula><graphic file="1687-1812-2007-078628-i13.gif"/></inline-formula>.</p> |
first_indexed | 2024-12-14T23:56:47Z |
format | Article |
id | doaj.art-4d5c5b1a120343d6b6413290da880e9b |
institution | Directory Open Access Journal |
issn | 1687-1820 1687-1812 |
language | English |
last_indexed | 2024-12-14T23:56:47Z |
publishDate | 2007-01-01 |
publisher | SpringerOpen |
record_format | Article |
series | Fixed Point Theory and Applications |
spelling | doaj.art-4d5c5b1a120343d6b6413290da880e9b2022-12-21T22:43:05ZengSpringerOpenFixed Point Theory and Applications1687-18201687-18122007-01-0120071078628An Extension of Gregus Fixed Point TheoremOlaleru JOAkewe H<p/> <p>Let <inline-formula><graphic file="1687-1812-2007-078628-i1.gif"/></inline-formula> be a closed convex subset of a complete metrizable topological vector space <inline-formula><graphic file="1687-1812-2007-078628-i2.gif"/></inline-formula> and <inline-formula><graphic file="1687-1812-2007-078628-i3.gif"/></inline-formula> a mapping that satisfies <inline-formula><graphic file="1687-1812-2007-078628-i4.gif"/></inline-formula> for all <inline-formula><graphic file="1687-1812-2007-078628-i5.gif"/></inline-formula>, where <inline-formula><graphic file="1687-1812-2007-078628-i6.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i7.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i8.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i9.gif"/></inline-formula>, <inline-formula><graphic file="1687-1812-2007-078628-i10.gif"/></inline-formula>, and <inline-formula><graphic file="1687-1812-2007-078628-i11.gif"/></inline-formula>. Then <inline-formula><graphic file="1687-1812-2007-078628-i12.gif"/></inline-formula> has a unique fixed point. The above theorem, which is a generalization and an extension of the results of several authors, is proved in this paper. In addition, we use the Mann iteration to approximate the fixed point of <inline-formula><graphic file="1687-1812-2007-078628-i13.gif"/></inline-formula>.</p>http://www.fixedpointtheoryandapplications.com/content/2007/078628 |
spellingShingle | Olaleru JO Akewe H An Extension of Gregus Fixed Point Theorem Fixed Point Theory and Applications |
title | An Extension of Gregus Fixed Point Theorem |
title_full | An Extension of Gregus Fixed Point Theorem |
title_fullStr | An Extension of Gregus Fixed Point Theorem |
title_full_unstemmed | An Extension of Gregus Fixed Point Theorem |
title_short | An Extension of Gregus Fixed Point Theorem |
title_sort | extension of gregus fixed point theorem |
url | http://www.fixedpointtheoryandapplications.com/content/2007/078628 |
work_keys_str_mv | AT olalerujo anextensionofgregusfixedpointtheorem AT akeweh anextensionofgregusfixedpointtheorem AT olalerujo extensionofgregusfixedpointtheorem AT akeweh extensionofgregusfixedpointtheorem |