Summary: | Three-dimensional (3D) bioprinting is the use of computer-controlled transfer processes for assembling bioinks (cell clusters or materials loaded with cells) into structures of prescribed 3D organization. The correct bioprinting parameters ensure a fast and accurate bioink deposition without exposing the cells to harsh conditions. This study seeks to optimize pneumatic extrusion-based bioprinting based on hydrogel flow rate and extrusion speed measurements. We measured the rate of the hydrogel flow through a cylindrical nozzle and used non-Newtonian hydrodynamics to fit the results. From the videos of free-hanging hydrogel strands delivered from a stationary print head, we inferred the extrusion speed, defined as the speed of advancement of newly formed strands. Then, we relied on volume conservation to evaluate the extrudate swell ratio. The theoretical analysis enabled us to compute the extrusion speed for pressures not tested experimentally as well as the printing speed needed to deposit hydrogel filaments of a given diameter. Finally, the proposed methodology was tested experimentally by analyzing the morphology of triple-layered square-grid hydrogel constructs printed at various applied pressures while the printing speeds matched the corresponding extrusion speeds. Taken together, the results of this study suggest that preliminary measurements and theoretical analyses can simplify the search for the optimal bioprinting parameters.
|