Effect of Addition of Cross-Linked Starch on the Properties of Degraded PBAT Poly(butylene adipate-co-terephthalate) Films

This work aimed to evaluate the properties of butylene adipate-co-terephthalate (PBAT) degraded after 1800 days of storage (DPBAT) by preparing blends (films) with crosslinked starch (Cm) through extrusion and thermocompression. Different ratios of DPBAT:Cm (70:30, 60:40, and 50:50 m/m) were prepare...

Full description

Bibliographic Details
Main Authors: Denise Agostina Grimaut, Jania Betania Alves da Silva, Paulo Vitor França Lemos, Paulo Romano Cruz Correia, Jamille Santos Santana, Luiggi Cavalcanti Pessôa, Santiago Estevez-Areco, Lucía Mercedes Famá, Silvia Nair Goyanes, Henrique Rodrigues Marcelino, Denilson de Jesus Assis, Carolina Oliveira de Souza
Format: Article
Language:English
Published: MDPI AG 2023-07-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/14/3106
Description
Summary:This work aimed to evaluate the properties of butylene adipate-co-terephthalate (PBAT) degraded after 1800 days of storage (DPBAT) by preparing blends (films) with crosslinked starch (Cm) through extrusion and thermocompression. Different ratios of DPBAT:Cm (70:30, 60:40, and 50:50 m/m) were prepared. The incorporation of Cm into DPBAT significantly changed the properties of the films by making them stiffer (increasing Young’s modulus by up to 50%) and increasing the thermal resistance of DPBAT. The presence of crosslinked starch in the films made them less hydrophobic (with decreased contact angle and increased moisture content), but these parameters did not vary linearly with changes in the content of crosslinked starch in the blend (DPBAT:Cm). The microscopic images show an inhomogeneous distribution of Cm granules in the DPBAT matrix. Thus, the films prepared with PBAT show a significant decrease in their mechanical parameters and heat resistance after long-term storage. However, the preparation of blends of degraded DPBAT with crosslinked starch promoted changes in the properties of the films prepared by thermocompression, which could be useful for disposable packaging.
ISSN:2073-4360