Nemytskii operator on generalized bounded variation space

In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f(t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R....

Full description

Bibliographic Details
Main Authors: René Erlín Castillo, Humberto Rafeiro, Eduard Trousselot
Format: Article
Language:Spanish
Published: Universidad Industrial de Santander 2014-06-01
Series:Revista Integración
Subjects:
Online Access:http://revistas.uis.edu.co/index.php/revistaintegracion/article/view/4064/4410
Description
Summary:In this paper we show that if the Nemytskii operator maps the (φ, α)-bounded variation space into itself and satisfies some Lipschitz condition, then there are two functions g and h belonging to the (φ, α)-bounded variation space such that f(t, y) = g(t)y + h(t) for all t ∈ [a, b], y ∈ R. Resumen. En este artículo demostramos que si el operador de Nemytskii lleva el espacio de variación (φ, α)-acotada en sí mismo, y satisface cierta condición de Lipschitz, entonces existen dos funciones g y h perteneciendo al espacio de variación (φ, α)-acotada tal que f(t, y) = g(t)y + h(t) para todo t ∈ [a, b], y ∈ R.
ISSN:0120-419X
2145-8472