Numerical Study on Minimum Shear Connection Ratio of Tie-Bars in Steel Plate–Concrete Composite Beams Subjected to Out-of-Plane Cyclic Loading

The failure modes of tie-bars under monotonic loading and cyclic loading are ductility and brittleness, respectively. They can significantly affect the design for tie-bars in a steel plate–concrete (SC) composite structure. A 3D finite element model of a SC composite beam was developed and verified...

Full description

Bibliographic Details
Main Authors: Bing Lu, Cuihua Li, Cong Liu, Lanhui Guo
Format: Article
Language:English
Published: MDPI AG 2022-02-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/4/1820
Description
Summary:The failure modes of tie-bars under monotonic loading and cyclic loading are ductility and brittleness, respectively. They can significantly affect the design for tie-bars in a steel plate–concrete (SC) composite structure. A 3D finite element model of a SC composite beam was developed and verified through a quasi-static test. Two rules on the interfacial shear distribution were deduced and verified. Then, a total of 188 finite element models were developed to investigate the minimum shear connection ratio of tie-bars in SC composite beams, which can ensure the sufficient energy dissipation capacity of a SC composite beam under out-of-plane cyclic loading. The influences of the shear connection ratio, shear span versus depth ratio, stiffness, and number of tie-bars on the seismic behavior of a SC composite beam were investigated. Finally, a design method for tie-bars in the SC composite beam under out-of-plane cyclic loading was proposed.
ISSN:2076-3417