Fluxes, vacua, and tadpoles meet Landau-Ginzburg and Fermat

Abstract Type IIB flux vacua based on Landau-Ginzburg models without Kähler deformations provide fully-controlled insights into the non-geometric and strongly-coupled string landscape. We show here that supersymmetric flux configurations at the Fermat point of the 19 model, which were found long-tim...

Full description

Bibliographic Details
Main Authors: Katrin Becker, Eduardo Gonzalo, Johannes Walcher, Timm Wrase
Format: Article
Language:English
Published: SpringerOpen 2022-12-01
Series:Journal of High Energy Physics
Subjects:
Online Access:https://doi.org/10.1007/JHEP12(2022)083
Description
Summary:Abstract Type IIB flux vacua based on Landau-Ginzburg models without Kähler deformations provide fully-controlled insights into the non-geometric and strongly-coupled string landscape. We show here that supersymmetric flux configurations at the Fermat point of the 19 model, which were found long-time ago to saturate the orientifold tadpole, leave a number of massless fields, which however are not all flat directions of the superpotential at higher order. More generally, the rank of the Hessian of the superpotential is compatible with a suitably formulated tadpole conjecture for all fluxes that we found. Moreover, we describe new infinite families of supersymmetric 4d N $$ \mathcal{N} $$ = 1 Minkowski and AdS vacua and confront them with several other swampland conjectures.
ISSN:1029-8479