A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu)
<p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-10-01
|
Series: | BMC Genomics |
Online Access: | http://www.biomedcentral.com/1471-2164/11/605 |
_version_ | 1819037736998273024 |
---|---|
author | Menossi Marcelo Vidal Ramon O Del Bem Luiz Torres Tatiana T Costa Gustavo GL Da Silva Márcio J Cardoso Kiara C Hyslop Stephen |
author_facet | Menossi Marcelo Vidal Ramon O Del Bem Luiz Torres Tatiana T Costa Gustavo GL Da Silva Márcio J Cardoso Kiara C Hyslop Stephen |
author_sort | Menossi Marcelo |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of <it>Bothrops alternatus</it>, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay.</p> <p>Results</p> <p>A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A<sub>2 </sub>(5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A<sub>2 </sub>were essentially acidic; no basic PLA<sub>2 </sub>were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed.</p> <p>Conclusions</p> <p><it>Bothrops alternatus </it>venom gland contains the major toxin classes described for other <it>Bothrops </it>venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA<sub>2 </sub>agrees with the lower myotoxicity of this venom compared to other <it>Bothrops </it>species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.</p> |
first_indexed | 2024-12-21T08:26:10Z |
format | Article |
id | doaj.art-4dae4a9c611848f29ba98bd3410ce707 |
institution | Directory Open Access Journal |
issn | 1471-2164 |
language | English |
last_indexed | 2024-12-21T08:26:10Z |
publishDate | 2010-10-01 |
publisher | BMC |
record_format | Article |
series | BMC Genomics |
spelling | doaj.art-4dae4a9c611848f29ba98bd3410ce7072022-12-21T19:10:19ZengBMCBMC Genomics1471-21642010-10-0111160510.1186/1471-2164-11-605A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu)Menossi MarceloVidal Ramon ODel Bem LuizTorres Tatiana TCosta Gustavo GLDa Silva Márcio JCardoso Kiara CHyslop Stephen<p>Abstract</p> <p>Background</p> <p>The genus <it>Bothrops </it>is widespread throughout Central and South America and is the principal cause of snakebite in these regions. Transcriptomic and proteomic studies have examined the venom composition of several species in this genus, but many others remain to be studied. In this work, we used a transcriptomic approach to examine the venom gland genes of <it>Bothrops alternatus</it>, a clinically important species found in southeastern and southern Brazil, Uruguay, northern Argentina and eastern Paraguay.</p> <p>Results</p> <p>A cDNA library of 5,350 expressed sequence tags (ESTs) was produced and assembled into 838 contigs and 4512 singletons. BLAST searches of relevant databases showed 30% hits and 70% no-hits, with toxin-related transcripts accounting for 23% and 78% of the total transcripts and hits, respectively. Gene ontology analysis identified non-toxin genes related to general metabolism, transcription and translation, processing and sorting, (polypeptide) degradation, structural functions and cell regulation. The major groups of toxin transcripts identified were metalloproteinases (81%), bradykinin-potentiating peptides/C-type natriuretic peptides (8.8%), phospholipases A<sub>2 </sub>(5.6%), serine proteinases (1.9%) and C-type lectins (1.5%). Metalloproteinases were almost exclusively type PIII proteins, with few type PII and no type PI proteins. Phospholipases A<sub>2 </sub>were essentially acidic; no basic PLA<sub>2 </sub>were detected. Minor toxin transcripts were related to L-amino acid oxidase, cysteine-rich secretory proteins, dipeptidylpeptidase IV, hyaluronidase, three-finger toxins and ohanin. Two non-toxic proteins, thioredoxin and double-specificity phosphatase Dusp6, showed high sequence identity to similar proteins from other snakes. In addition to the above features, single-nucleotide polymorphisms, microsatellites, transposable elements and inverted repeats that could contribute to toxin diversity were observed.</p> <p>Conclusions</p> <p><it>Bothrops alternatus </it>venom gland contains the major toxin classes described for other <it>Bothrops </it>venoms based on trancriptomic and proteomic studies. The predominance of type PIII metalloproteinases agrees with the well-known hemorrhagic activity of this venom, whereas the lower content of serine proteases and C-type lectins could contribute to less marked coagulopathy following envenoming by this species. The lack of basic PLA<sub>2 </sub>agrees with the lower myotoxicity of this venom compared to other <it>Bothrops </it>species with these toxins. Together, these results contribute to our understanding of the physiopathology of envenoming by this species.</p>http://www.biomedcentral.com/1471-2164/11/605 |
spellingShingle | Menossi Marcelo Vidal Ramon O Del Bem Luiz Torres Tatiana T Costa Gustavo GL Da Silva Márcio J Cardoso Kiara C Hyslop Stephen A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu) BMC Genomics |
title | A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu) |
title_full | A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu) |
title_fullStr | A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu) |
title_full_unstemmed | A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu) |
title_short | A transcriptomic analysis of gene expression in the venom gland of the snake <it>Bothrops alternatus </it>(urutu) |
title_sort | transcriptomic analysis of gene expression in the venom gland of the snake it bothrops alternatus it urutu |
url | http://www.biomedcentral.com/1471-2164/11/605 |
work_keys_str_mv | AT menossimarcelo atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT vidalramono atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT delbemluiz atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT torrestatianat atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT costagustavogl atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT dasilvamarcioj atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT cardosokiarac atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT hyslopstephen atranscriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT menossimarcelo transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT vidalramono transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT delbemluiz transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT torrestatianat transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT costagustavogl transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT dasilvamarcioj transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT cardosokiarac transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu AT hyslopstephen transcriptomicanalysisofgeneexpressioninthevenomglandofthesnakeitbothropsalternatusiturutu |