Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.

BACKGROUND:Classification of acute decompensated heart failure (ADHF) is based on subjective criteria that crudely capture disease heterogeneity. Improved phenotyping of the syndrome may help improve therapeutic strategies. OBJECTIVE:To derive cluster analysis-based groupings for patients hospitaliz...

Full description

Bibliographic Details
Main Authors: Tariq Ahmad, Nihar Desai, Francis Wilson, Phillip Schulte, Allison Dunning, Daniel Jacoby, Larry Allen, Mona Fiuzat, Joseph Rogers, G Michael Felker, Christopher O'Connor, Chetan B Patel
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2016-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC4739604?pdf=render
_version_ 1818580412129083392
author Tariq Ahmad
Nihar Desai
Francis Wilson
Phillip Schulte
Allison Dunning
Daniel Jacoby
Larry Allen
Mona Fiuzat
Joseph Rogers
G Michael Felker
Christopher O'Connor
Chetan B Patel
author_facet Tariq Ahmad
Nihar Desai
Francis Wilson
Phillip Schulte
Allison Dunning
Daniel Jacoby
Larry Allen
Mona Fiuzat
Joseph Rogers
G Michael Felker
Christopher O'Connor
Chetan B Patel
author_sort Tariq Ahmad
collection DOAJ
description BACKGROUND:Classification of acute decompensated heart failure (ADHF) is based on subjective criteria that crudely capture disease heterogeneity. Improved phenotyping of the syndrome may help improve therapeutic strategies. OBJECTIVE:To derive cluster analysis-based groupings for patients hospitalized with ADHF, and compare their prognostic performance to hemodynamic classifications derived at the bedside. METHODS:We performed a cluster analysis on baseline clinical variables and PAC measurements of 172 ADHF patients from the ESCAPE trial. Employing regression techniques, we examined associations between clusters and clinically determined hemodynamic profiles (warm/cold/wet/dry). We assessed association with clinical outcomes using Cox proportional hazards models. Likelihood ratio tests were used to compare the prognostic value of cluster data to that of hemodynamic data. RESULTS:We identified four advanced HF clusters: 1) male Caucasians with ischemic cardiomyopathy, multiple comorbidities, lowest B-type natriuretic peptide (BNP) levels; 2) females with non-ischemic cardiomyopathy, few comorbidities, most favorable hemodynamics; 3) young African American males with non-ischemic cardiomyopathy, most adverse hemodynamics, advanced disease; and 4) older Caucasians with ischemic cardiomyopathy, concomitant renal insufficiency, highest BNP levels. There was no association between clusters and bedside-derived hemodynamic profiles (p = 0.70). For all adverse clinical outcomes, Cluster 4 had the highest risk, and Cluster 2, the lowest. Compared to Cluster 4, Clusters 1-3 had 45-70% lower risk of all-cause mortality. Clusters were significantly associated with clinical outcomes, whereas hemodynamic profiles were not. CONCLUSIONS:By clustering patients with similar objective variables, we identified four clinically relevant phenotypes of ADHF patients, with no discernable relationship to hemodynamic profiles, but distinct associations with adverse outcomes. Our analysis suggests that ADHF classification using simultaneous considerations of etiology, comorbid conditions, and biomarker levels, may be superior to bedside classifications.
first_indexed 2024-12-16T07:17:11Z
format Article
id doaj.art-4dae9f2dde544d75baedb3c778242e4c
institution Directory Open Access Journal
issn 1932-6203
language English
last_indexed 2024-12-16T07:17:11Z
publishDate 2016-01-01
publisher Public Library of Science (PLoS)
record_format Article
series PLoS ONE
spelling doaj.art-4dae9f2dde544d75baedb3c778242e4c2022-12-21T22:39:45ZengPublic Library of Science (PLoS)PLoS ONE1932-62032016-01-01112e014588110.1371/journal.pone.0145881Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.Tariq AhmadNihar DesaiFrancis WilsonPhillip SchulteAllison DunningDaniel JacobyLarry AllenMona FiuzatJoseph RogersG Michael FelkerChristopher O'ConnorChetan B PatelBACKGROUND:Classification of acute decompensated heart failure (ADHF) is based on subjective criteria that crudely capture disease heterogeneity. Improved phenotyping of the syndrome may help improve therapeutic strategies. OBJECTIVE:To derive cluster analysis-based groupings for patients hospitalized with ADHF, and compare their prognostic performance to hemodynamic classifications derived at the bedside. METHODS:We performed a cluster analysis on baseline clinical variables and PAC measurements of 172 ADHF patients from the ESCAPE trial. Employing regression techniques, we examined associations between clusters and clinically determined hemodynamic profiles (warm/cold/wet/dry). We assessed association with clinical outcomes using Cox proportional hazards models. Likelihood ratio tests were used to compare the prognostic value of cluster data to that of hemodynamic data. RESULTS:We identified four advanced HF clusters: 1) male Caucasians with ischemic cardiomyopathy, multiple comorbidities, lowest B-type natriuretic peptide (BNP) levels; 2) females with non-ischemic cardiomyopathy, few comorbidities, most favorable hemodynamics; 3) young African American males with non-ischemic cardiomyopathy, most adverse hemodynamics, advanced disease; and 4) older Caucasians with ischemic cardiomyopathy, concomitant renal insufficiency, highest BNP levels. There was no association between clusters and bedside-derived hemodynamic profiles (p = 0.70). For all adverse clinical outcomes, Cluster 4 had the highest risk, and Cluster 2, the lowest. Compared to Cluster 4, Clusters 1-3 had 45-70% lower risk of all-cause mortality. Clusters were significantly associated with clinical outcomes, whereas hemodynamic profiles were not. CONCLUSIONS:By clustering patients with similar objective variables, we identified four clinically relevant phenotypes of ADHF patients, with no discernable relationship to hemodynamic profiles, but distinct associations with adverse outcomes. Our analysis suggests that ADHF classification using simultaneous considerations of etiology, comorbid conditions, and biomarker levels, may be superior to bedside classifications.http://europepmc.org/articles/PMC4739604?pdf=render
spellingShingle Tariq Ahmad
Nihar Desai
Francis Wilson
Phillip Schulte
Allison Dunning
Daniel Jacoby
Larry Allen
Mona Fiuzat
Joseph Rogers
G Michael Felker
Christopher O'Connor
Chetan B Patel
Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.
PLoS ONE
title Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.
title_full Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.
title_fullStr Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.
title_full_unstemmed Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.
title_short Clinical Implications of Cluster Analysis-Based Classification of Acute Decompensated Heart Failure and Correlation with Bedside Hemodynamic Profiles.
title_sort clinical implications of cluster analysis based classification of acute decompensated heart failure and correlation with bedside hemodynamic profiles
url http://europepmc.org/articles/PMC4739604?pdf=render
work_keys_str_mv AT tariqahmad clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT nihardesai clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT franciswilson clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT phillipschulte clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT allisondunning clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT danieljacoby clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT larryallen clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT monafiuzat clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT josephrogers clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT gmichaelfelker clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT christopheroconnor clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles
AT chetanbpatel clinicalimplicationsofclusteranalysisbasedclassificationofacutedecompensatedheartfailureandcorrelationwithbedsidehemodynamicprofiles