On Optimal Hardy Inequalities in Cones

For a given subcritical Schrödinger operator in a cone in ℝn with a given Hardy potential corresponding to the distance to the boundary of the cone, we present an explicit optimal Hardy-type improvement. In particular, we present an explicit expression for the associate best Hardy constant, and for...

Full description

Bibliographic Details
Main Authors: Baptiste Devyver, Yehuda Pinchover, Georgios Psaradakis
Format: Article
Language:English
Published: University of Bologna 2014-12-01
Series:Bruno Pini Mathematical Analysis Seminar
Subjects:
Online Access:http://mathematicalanalysis.unibo.it/article/view/4741
_version_ 1818206202269532160
author Baptiste Devyver
Yehuda Pinchover
Georgios Psaradakis
author_facet Baptiste Devyver
Yehuda Pinchover
Georgios Psaradakis
author_sort Baptiste Devyver
collection DOAJ
description For a given subcritical Schrödinger operator in a cone in ℝn with a given Hardy potential corresponding to the distance to the boundary of the cone, we present an explicit optimal Hardy-type improvement. In particular, we present an explicit expression for the associate best Hardy constant, and for the corresponding ground state.
first_indexed 2024-12-12T04:09:17Z
format Article
id doaj.art-4db331a31d624c05b84ad4f813e550d7
institution Directory Open Access Journal
issn 2240-2829
language English
last_indexed 2024-12-12T04:09:17Z
publishDate 2014-12-01
publisher University of Bologna
record_format Article
series Bruno Pini Mathematical Analysis Seminar
spelling doaj.art-4db331a31d624c05b84ad4f813e550d72022-12-22T00:38:39ZengUniversity of BolognaBruno Pini Mathematical Analysis Seminar2240-28292014-12-0151678210.6092/issn.2240-2829/47414356On Optimal Hardy Inequalities in ConesBaptiste Devyver0Yehuda Pinchover1Georgios Psaradakis2University of British Columbia, VancouverDepartment of Mathematics, Technion - Israel Institute of Technology, HaifaDepartment of Mathematics, Technion - Israel Institute of Technology, HaifaFor a given subcritical Schrödinger operator in a cone in ℝn with a given Hardy potential corresponding to the distance to the boundary of the cone, we present an explicit optimal Hardy-type improvement. In particular, we present an explicit expression for the associate best Hardy constant, and for the corresponding ground state.http://mathematicalanalysis.unibo.it/article/view/4741Ground stateHardy inequalityminimal growthpositive solutions
spellingShingle Baptiste Devyver
Yehuda Pinchover
Georgios Psaradakis
On Optimal Hardy Inequalities in Cones
Bruno Pini Mathematical Analysis Seminar
Ground state
Hardy inequality
minimal growth
positive solutions
title On Optimal Hardy Inequalities in Cones
title_full On Optimal Hardy Inequalities in Cones
title_fullStr On Optimal Hardy Inequalities in Cones
title_full_unstemmed On Optimal Hardy Inequalities in Cones
title_short On Optimal Hardy Inequalities in Cones
title_sort on optimal hardy inequalities in cones
topic Ground state
Hardy inequality
minimal growth
positive solutions
url http://mathematicalanalysis.unibo.it/article/view/4741
work_keys_str_mv AT baptistedevyver onoptimalhardyinequalitiesincones
AT yehudapinchover onoptimalhardyinequalitiesincones
AT georgiospsaradakis onoptimalhardyinequalitiesincones