Ca2+ dependence of gluconeogenesis stimulation by glucagon at different cytosolic NAD+-NADH redox potentials

The influence of Ca2+ on hepatic gluconeogenesis was measured in the isolated perfused rat liver at different cytosolic NAD+-NADH potentials. Lactate and pyruvate were the gluconeogenic substrates and the cytosolic NAD+-NADH potentials were changed by varying the lactate to pyruvate ratios from 0.01...

Full description

Bibliographic Details
Main Authors: A.C. Marques-da-Silva, R.B. D'Ávila, A.G. Ferrari, A.M. Kelmer-Bracht, J. Constantin, N.S. Yamamoto, A. Bracht
Format: Article
Language:English
Published: Associação Brasileira de Divulgação Científica 1997-07-01
Series:Brazilian Journal of Medical and Biological Research
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X1997000700002
Description
Summary:The influence of Ca2+ on hepatic gluconeogenesis was measured in the isolated perfused rat liver at different cytosolic NAD+-NADH potentials. Lactate and pyruvate were the gluconeogenic substrates and the cytosolic NAD+-NADH potentials were changed by varying the lactate to pyruvate ratios from 0.01 to 100. The following results were obtained: a) gluconeogenesis from lactate plus pyruvate was not affected by Ca2+-free perfusion (no Ca2+ in the perfusion fluid combined with previous depletion of the intracellular pools); gluconeogenesis was also poorly dependent on the lactate to pyruvate ratios in the range of 0.1 to 100; only for a ratio equal to 0.01 was a significantly smaller gluconeogenic activity observed in comparison to the other ratios. b) In the presence of Ca2+, the increase in oxygen uptake caused by the infusion of lactate plus pyruvate at a ratio equal to 10 was the most pronounced one; in Ca2+-free perfusion the increase in oxygen uptake caused by lactate plus pyruvate infusion tended to be higher for all lactate to pyruvate ratios; the most pronounced difference was observed for a lactate/pyruvate ratio equal to 1. c) In the presence of Ca2+ the effects of glucagon on gluconeogenesis showed a positive correlation with the lactate to pyruvate ratios; for a ratio equal to 0.01 no stimulation occurred, but in the 0.1 to 100 range stimulation increased progressively, producing a clear parabolic dependence between the effects of glucagon and the lactate to pyruvate ratio. d) In the absence of Ca2+ the relationship between the changes caused by glucagon in gluconeogenesis and the lactate to pyruvate ratio was substantially changed; the dependence curve was no longer parabolic but sigmoidal in shape with a plateau beginning at a lactate/pyruvate ratio equal to 1; there was inhibition at the lactate to pyruvate ratios of 0.01 and 0.1 and a constant stimulation starting with a ratio equal to 1; for the lactate to pyruvate ratios of 10 and 100, stimulation caused by glucagon was much smaller than that found when Ca2+ was present. e) The effects of glucagon on oxygen uptake in the presence of Ca2+ showed a parabolic relationship with the lactate to pyruvate ratios which was closely similar to that found in the case of gluconeogenesis; the only difference was that inhibition rather than stimulation of oxygen uptake was observed for a lactate to pyruvate ratio equal to 0.01; progressive stimulation was observed in the 0.1 to 100 range. f) In the absence of Ca2+ the effects of glucagon on oxygen uptake were different; the dependence curve was sigmoidal at the onset, with a well-defined maximum at a lactate to pyruvate ratio equal to 1; this maximum was followed by a steady decline at higher ratios; at the ratios of 0.01 and 0.1 inhibition took place; oxygen uptake stimulation caused by glucagon was generally lower in the absence of Ca2+ except when the lactate to pyruvate ratio was equal to 1. The results of the present study demonstrate that stimulation of gluconeogenesis by glucagon depends on Ca2+. However, Ca2+ is only effective in helping gluconeogenesis stimulation by glucagon at highly negative redox potentials of the cytosolic NAD+-NADH system. The triple interdependence of glucagon-Ca2+-NAD+-NADH redox potential reveals highly complex interrelations that can only be partially understood at the present stage of knowledge
ISSN:0100-879X
1414-431X