Systematic Review of Financial Distress Identification using Artificial Intelligence Methods

The study presents a systematic review of 232 studies on various aspects of the use of artificial intelligence methods for identification of financial distress (such as bankruptcy or insolvency). We follow the guidelines of the PRISMA methodology for performing the systematic reviews. The study disc...

Full description

Bibliographic Details
Main Authors: Dovilė Kuizinienė, Tomas Krilavičius, Robertas Damaševičius, Rytis Maskeliūnas
Format: Article
Language:English
Published: Taylor & Francis Group 2022-12-01
Series:Applied Artificial Intelligence
Online Access:http://dx.doi.org/10.1080/08839514.2022.2138124
_version_ 1797641070421475328
author Dovilė Kuizinienė
Tomas Krilavičius
Robertas Damaševičius
Rytis Maskeliūnas
author_facet Dovilė Kuizinienė
Tomas Krilavičius
Robertas Damaševičius
Rytis Maskeliūnas
author_sort Dovilė Kuizinienė
collection DOAJ
description The study presents a systematic review of 232 studies on various aspects of the use of artificial intelligence methods for identification of financial distress (such as bankruptcy or insolvency). We follow the guidelines of the PRISMA methodology for performing the systematic reviews. The study discusses bankruptcy-related financial datasets, data imbalance, feature dimensionality reduction in financial datasets, financial distress prediction, data pre-processing issues, non-financial indicators, frequently used machine-learning methods, performance evolution metrics, and other related issues of machine-learning-based workflows. The study findings revealed the necessity of data balancing, dimensionality reduction techniques in data preprocessing, and allow researchers to identify new research directions that have not been analyzed yet.
first_indexed 2024-03-11T13:40:14Z
format Article
id doaj.art-4dc77de22d184f0ab0072475db979fe9
institution Directory Open Access Journal
issn 0883-9514
1087-6545
language English
last_indexed 2024-03-11T13:40:14Z
publishDate 2022-12-01
publisher Taylor & Francis Group
record_format Article
series Applied Artificial Intelligence
spelling doaj.art-4dc77de22d184f0ab0072475db979fe92023-11-02T13:36:39ZengTaylor & Francis GroupApplied Artificial Intelligence0883-95141087-65452022-12-0136110.1080/08839514.2022.21381242138124Systematic Review of Financial Distress Identification using Artificial Intelligence MethodsDovilė Kuizinienė0Tomas Krilavičius1Robertas Damaševičius2Rytis Maskeliūnas3Vytautas Magnus UniversityVytautas Magnus UniversityVytautas Magnus UniversityVytautas Magnus UniversityThe study presents a systematic review of 232 studies on various aspects of the use of artificial intelligence methods for identification of financial distress (such as bankruptcy or insolvency). We follow the guidelines of the PRISMA methodology for performing the systematic reviews. The study discusses bankruptcy-related financial datasets, data imbalance, feature dimensionality reduction in financial datasets, financial distress prediction, data pre-processing issues, non-financial indicators, frequently used machine-learning methods, performance evolution metrics, and other related issues of machine-learning-based workflows. The study findings revealed the necessity of data balancing, dimensionality reduction techniques in data preprocessing, and allow researchers to identify new research directions that have not been analyzed yet.http://dx.doi.org/10.1080/08839514.2022.2138124
spellingShingle Dovilė Kuizinienė
Tomas Krilavičius
Robertas Damaševičius
Rytis Maskeliūnas
Systematic Review of Financial Distress Identification using Artificial Intelligence Methods
Applied Artificial Intelligence
title Systematic Review of Financial Distress Identification using Artificial Intelligence Methods
title_full Systematic Review of Financial Distress Identification using Artificial Intelligence Methods
title_fullStr Systematic Review of Financial Distress Identification using Artificial Intelligence Methods
title_full_unstemmed Systematic Review of Financial Distress Identification using Artificial Intelligence Methods
title_short Systematic Review of Financial Distress Identification using Artificial Intelligence Methods
title_sort systematic review of financial distress identification using artificial intelligence methods
url http://dx.doi.org/10.1080/08839514.2022.2138124
work_keys_str_mv AT dovilekuiziniene systematicreviewoffinancialdistressidentificationusingartificialintelligencemethods
AT tomaskrilavicius systematicreviewoffinancialdistressidentificationusingartificialintelligencemethods
AT robertasdamasevicius systematicreviewoffinancialdistressidentificationusingartificialintelligencemethods
AT rytismaskeliunas systematicreviewoffinancialdistressidentificationusingartificialintelligencemethods