Soil organic carbon models need independent time-series validation for reliable prediction

Abstract Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depe...

Full description

Bibliographic Details
Main Authors: Julia Le Noë, Stefano Manzoni, Rose Abramoff, Tobias Bölscher, Elisa Bruni, Rémi Cardinael, Philippe Ciais, Claire Chenu, Hugues Clivot, Delphine Derrien, Fabien Ferchaud, Patricia Garnier, Daniel Goll, Gwenaëlle Lashermes, Manuel Martin, Daniel Rasse, Frédéric Rees, Julien Sainte-Marie, Elodie Salmon, Marcus Schiedung, Josh Schimel, William Wieder, Samuel Abiven, Pierre Barré, Lauric Cécillon, Bertrand Guenet
Format: Article
Language:English
Published: Nature Portfolio 2023-05-01
Series:Communications Earth & Environment
Online Access:https://doi.org/10.1038/s43247-023-00830-5
_version_ 1797827323253227520
author Julia Le Noë
Stefano Manzoni
Rose Abramoff
Tobias Bölscher
Elisa Bruni
Rémi Cardinael
Philippe Ciais
Claire Chenu
Hugues Clivot
Delphine Derrien
Fabien Ferchaud
Patricia Garnier
Daniel Goll
Gwenaëlle Lashermes
Manuel Martin
Daniel Rasse
Frédéric Rees
Julien Sainte-Marie
Elodie Salmon
Marcus Schiedung
Josh Schimel
William Wieder
Samuel Abiven
Pierre Barré
Lauric Cécillon
Bertrand Guenet
author_facet Julia Le Noë
Stefano Manzoni
Rose Abramoff
Tobias Bölscher
Elisa Bruni
Rémi Cardinael
Philippe Ciais
Claire Chenu
Hugues Clivot
Delphine Derrien
Fabien Ferchaud
Patricia Garnier
Daniel Goll
Gwenaëlle Lashermes
Manuel Martin
Daniel Rasse
Frédéric Rees
Julien Sainte-Marie
Elodie Salmon
Marcus Schiedung
Josh Schimel
William Wieder
Samuel Abiven
Pierre Barré
Lauric Cécillon
Bertrand Guenet
author_sort Julia Le Noë
collection DOAJ
description Abstract Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depending on their objectives and features, discuss how validation of predictive models can be improved. We find a critical lack of independent validation using observed time series. Conducting such validations should be a priority to improve the model reliability. Approximately 60% of the models we analysed are not designed for predictions, but rather for conceptual understanding of soil processes. These models provide important insights by identifying key processes and alternative formalisms that can be relevant for predictive models. We argue that combining independent validation based on observed time series and improved information flow between predictive and conceptual models will increase reliability in predictions.
first_indexed 2024-04-09T12:46:05Z
format Article
id doaj.art-4dcab8d04662477892c658cb8612071c
institution Directory Open Access Journal
issn 2662-4435
language English
last_indexed 2024-04-09T12:46:05Z
publishDate 2023-05-01
publisher Nature Portfolio
record_format Article
series Communications Earth & Environment
spelling doaj.art-4dcab8d04662477892c658cb8612071c2023-05-14T11:28:56ZengNature PortfolioCommunications Earth & Environment2662-44352023-05-01411810.1038/s43247-023-00830-5Soil organic carbon models need independent time-series validation for reliable predictionJulia Le Noë0Stefano Manzoni1Rose Abramoff2Tobias Bölscher3Elisa Bruni4Rémi Cardinael5Philippe Ciais6Claire Chenu7Hugues Clivot8Delphine Derrien9Fabien Ferchaud10Patricia Garnier11Daniel Goll12Gwenaëlle Lashermes13Manuel Martin14Daniel Rasse15Frédéric Rees16Julien Sainte-Marie17Elodie Salmon18Marcus Schiedung19Josh Schimel20William Wieder21Samuel Abiven22Pierre Barré23Lauric Cécillon24Bertrand Guenet25Laboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSLDepartment of Physical Geography, Stockholm UniversityLaboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQUniversity of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSysLaboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSLAIDA, Univ Montpellier, CIRADLaboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQUniversity of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSysUniversité de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614INRAE, Biogéochimie des Ecosystèmes ForestiersBioEcoAgro Joint Research Unit, INRAE, Université de Liège, Université de Lille, Université de Picardie Jules VerneUniversity of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSysLaboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQUniversité de Reims Champagne-Ardenne, INRAE, FARE, UMR A 614INRAE, InfoSolNorwegian Institute of Bioeconomy Research (NIBIO), Division of Environment and Natural ResourcesUniversity of Paris-Saclay, INRAE, AgroParisTech, UMR EcoSysUniversité de Lorraine, AgroParisTech, INRAE, SILVALaboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQDepartment of Geography, University of ZurichDepartment of Ecology, Evolution and Marine Biology, University of California Santa BarbaraClimate and Global Dynamics Laboratory, National Center for Atmospheric ResearchLaboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSLLaboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSLLaboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSLLaboratoire de Géologie, École normale supérieure, CNRS, PSL Univ., IPSLAbstract Numerical models are crucial to understand and/or predict past and future soil organic carbon dynamics. For those models aiming at prediction, validation is a critical step to gain confidence in projections. With a comprehensive review of ~250 models, we assess how models are validated depending on their objectives and features, discuss how validation of predictive models can be improved. We find a critical lack of independent validation using observed time series. Conducting such validations should be a priority to improve the model reliability. Approximately 60% of the models we analysed are not designed for predictions, but rather for conceptual understanding of soil processes. These models provide important insights by identifying key processes and alternative formalisms that can be relevant for predictive models. We argue that combining independent validation based on observed time series and improved information flow between predictive and conceptual models will increase reliability in predictions.https://doi.org/10.1038/s43247-023-00830-5
spellingShingle Julia Le Noë
Stefano Manzoni
Rose Abramoff
Tobias Bölscher
Elisa Bruni
Rémi Cardinael
Philippe Ciais
Claire Chenu
Hugues Clivot
Delphine Derrien
Fabien Ferchaud
Patricia Garnier
Daniel Goll
Gwenaëlle Lashermes
Manuel Martin
Daniel Rasse
Frédéric Rees
Julien Sainte-Marie
Elodie Salmon
Marcus Schiedung
Josh Schimel
William Wieder
Samuel Abiven
Pierre Barré
Lauric Cécillon
Bertrand Guenet
Soil organic carbon models need independent time-series validation for reliable prediction
Communications Earth & Environment
title Soil organic carbon models need independent time-series validation for reliable prediction
title_full Soil organic carbon models need independent time-series validation for reliable prediction
title_fullStr Soil organic carbon models need independent time-series validation for reliable prediction
title_full_unstemmed Soil organic carbon models need independent time-series validation for reliable prediction
title_short Soil organic carbon models need independent time-series validation for reliable prediction
title_sort soil organic carbon models need independent time series validation for reliable prediction
url https://doi.org/10.1038/s43247-023-00830-5
work_keys_str_mv AT julialenoe soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT stefanomanzoni soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT roseabramoff soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT tobiasbolscher soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT elisabruni soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT remicardinael soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT philippeciais soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT clairechenu soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT huguesclivot soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT delphinederrien soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT fabienferchaud soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT patriciagarnier soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT danielgoll soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT gwenaellelashermes soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT manuelmartin soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT danielrasse soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT fredericrees soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT juliensaintemarie soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT elodiesalmon soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT marcusschiedung soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT joshschimel soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT williamwieder soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT samuelabiven soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT pierrebarre soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT lauriccecillon soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction
AT bertrandguenet soilorganiccarbonmodelsneedindependenttimeseriesvalidationforreliableprediction