Summary: | Weihua Zhang,1,2,* Na Zhu,3,* Jianbo Lai,1,4 Jingjing Liu,1,5 Chee H Ng,6 Jun Chen,3 Chao Qian,1,7 Yanli Du,1 Chanchan Hu,1,4 Jingkai Chen,1,4 Jianbo Hu,1,4 Zhong Wang,1,4 Hetong Zhou,1,4 Yi Xu,1,4 Yiru Fang,3 Chuan Shi,8– 11 Shaohua Hu1,4 1Department of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, People’s Republic of China; 2Department of Psychiatry, Taizhou Second People’s Hospital, Taizhou 317200, People’s Republic of China; 3Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, People’s Republic of China; 4The Key Laboratory of Mental Disorder Management of Zhejiang Province, Hangzhou 310003, People’s Republic of China; 5Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou 325000, People’s Republic of China; 6The Melbourne Clinic Department of Psychiatry, University of Melbourne, Melbourne, Victoria 3052, Australia; 7Department of Psychiatry, The Seventh Shaoxing People’s Hospital, Shaoxing 312000, People’s Republic of China; 8Department of Psychological Assesssment, Peking University Sixth Hospital, Beijing 100191, People’s Republic of China; 9Peking University Institute of Mental Health, Beijing 100191, People’s Republic of China; 10NHC Key Laboratory of Mental Health, Beijing 100191, People’s Republic of China; 11National Clinical Research Center for Mental Disorders, Beijing 100191, People’s Republic of China*These authors contributed equally to this workCorrespondence: Yiru FangShanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai 200030, People’s Republic of ChinaEmail yirufang@aliyun.comShaohua HuDepartment of Psychiatry, First Affiliated Hospital, Zhejiang University School of Medicine, The Key Laboratory of Mental Disorder Management of Zhejiang Province, 79 Qing Chun Road, Hangzhou 310003, People’s Republic of ChinaEmail dorhushaohua@zju.edu.cnPurpose: The THINC-integrated tool (THINC-it) as a brief screening tool can assesses cognitive impairment in patients with major depressive depression (MDD). Here, we aim to evaluate the reliability and validity of the THINC-it in a bipolar depression (BD-D) group in comparison with a healthy control (HC) group.Materials and Methods: Both groups were matched according to age, gender, years of education, and IQ. All participants completed the THINC-it test, including Spotter, Symbol Check, Codebreaker, Trails, and the Perceived Deficits Questionnaire for Depression-5-item (PDQ-5-D). The concurrent validity and internal consistency of the THINC-it test were analyzed, and 30 healthy controls were randomly sampled to retest THINC-it to verify the reliability of the THINC-it retest. The correlation between THINC-it and Hamilton Depression Scale (HAMD-17) and Sheehan Disability Scale (SDS) was also analyzed.Results: Fifty-eight patients with BD-D and 61 HCs were included for final analysis. There were significant mean difference (MD) standard errors (SE) between two groups in PDQ-5-D, Spotter and Codebreaker (all P< 0.01), Trails (P=0.015). There was no significant difference in Symbol Check (MD (SE)=− 0.01 (0.18), P=0.938; 95% CI=− 0.38 to 0.35). The Cronbach’s α of PDQ-5-D was 0.640. The intraclass correlation coefficient (ICC) was between 0.440 and 0.757. The highest concurrent validity was PDQ-5-D (r=0.812, P< 0.001). PDQ-5-D was positively correlated with HAMD-17 and SDS score (P< 0.01). The objective test had no significant correlation with HAMD-17 and SDS scores (P> 0.05).Conclusion: This study found that THINC-it can accurately present the cognitive impairment of patients with BD-D. It can be potentially applied in assessing the cognitive function of patients with BD-D although Symbol Check may not accurately reflect the level of cognitive function. The concurrent validity and retest reliability are lower than expected, we need to further increase the sample size to study.Keywords: bipolar depression, BD-D, major depressive depression, MDD, THINC-it, cognitive function, reliability, validity
|