Summary: | Abstract Recent studies have shown that some silent mutations can be harmful to various processes. In this study, we performed a comprehensive in silico analysis to elucidate the effects of silent mutations on cancer pathogenesis using exome sequencing data derived from the Cancer Genome Atlas. We focused on the codon optimality scores of silent mutations, which were defined as the difference between the optimality of synonymous codons, calculated using the codon usage table. The relationship between cancer evolution and silent mutations showed that the codon optimality score of the mutations that occurred later in carcinogenesis was significantly higher than of those that occurred earlier. In addition, mutations with higher scores were enriched in genes involved in the cell cycle and cell division, while those with lower scores were enriched in genes involved in apoptosis and cellular senescence. Our results demonstrate that some silent mutations can be involved in cancer pathogenesis.
|