Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics

Abstract The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties. However, ensuring that these properties match with experimental data is typic...

Full description

Bibliographic Details
Main Authors: Marc Duquesnoy, Teo Lombardo, Fernando Caro, Florent Haudiquez, Alain C. Ngandjong, Jiahui Xu, Hassan Oularbi, Alejandro A. Franco
Format: Article
Language:English
Published: Nature Portfolio 2022-07-01
Series:npj Computational Materials
Online Access:https://doi.org/10.1038/s41524-022-00819-2
_version_ 1818510084589748224
author Marc Duquesnoy
Teo Lombardo
Fernando Caro
Florent Haudiquez
Alain C. Ngandjong
Jiahui Xu
Hassan Oularbi
Alejandro A. Franco
author_facet Marc Duquesnoy
Teo Lombardo
Fernando Caro
Florent Haudiquez
Alain C. Ngandjong
Jiahui Xu
Hassan Oularbi
Alejandro A. Franco
author_sort Marc Duquesnoy
collection DOAJ
description Abstract The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties. However, ensuring that these properties match with experimental data is typically computationally expensive. In this work, we tackled this costly procedure by proposing a functional data-driven framework, aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values, and in a second step, recover additional values of the ongoing simulation to predict its final result. We demonstrated this approach in the context of the calculation of electrode slurries viscosities. We report that for various electrode chemistries, the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations, while being accurate with a $${R}_{\rm{score}}^{2}$$ R score 2 equals to 0.96.
first_indexed 2024-12-10T22:54:25Z
format Article
id doaj.art-4ddc9aac571247c883bfc655995d7c1e
institution Directory Open Access Journal
issn 2057-3960
language English
last_indexed 2024-12-10T22:54:25Z
publishDate 2022-07-01
publisher Nature Portfolio
record_format Article
series npj Computational Materials
spelling doaj.art-4ddc9aac571247c883bfc655995d7c1e2022-12-22T01:30:19ZengNature Portfolionpj Computational Materials2057-39602022-07-01811910.1038/s41524-022-00819-2Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamicsMarc Duquesnoy0Teo Lombardo1Fernando Caro2Florent Haudiquez3Alain C. Ngandjong4Jiahui Xu5Hassan Oularbi6Alejandro A. Franco7Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneLaboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules VerneAbstract The computational simulation of the manufacturing process of lithium-ion battery composite electrodes based on mechanistic models allows capturing the influence of manufacturing parameters on electrode properties. However, ensuring that these properties match with experimental data is typically computationally expensive. In this work, we tackled this costly procedure by proposing a functional data-driven framework, aiming first to retrieve the early numerical values calculated from a molecular dynamics simulation to predict if the observable being calculated is prone to match with our range of experimental values, and in a second step, recover additional values of the ongoing simulation to predict its final result. We demonstrated this approach in the context of the calculation of electrode slurries viscosities. We report that for various electrode chemistries, the expected mechanistic simulation results can be obtained 11 times faster with respect to the complete simulations, while being accurate with a $${R}_{\rm{score}}^{2}$$ R score 2 equals to 0.96.https://doi.org/10.1038/s41524-022-00819-2
spellingShingle Marc Duquesnoy
Teo Lombardo
Fernando Caro
Florent Haudiquez
Alain C. Ngandjong
Jiahui Xu
Hassan Oularbi
Alejandro A. Franco
Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
npj Computational Materials
title Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
title_full Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
title_fullStr Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
title_full_unstemmed Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
title_short Functional data-driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
title_sort functional data driven framework for fast forecasting of electrode slurry rheology simulated by molecular dynamics
url https://doi.org/10.1038/s41524-022-00819-2
work_keys_str_mv AT marcduquesnoy functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT teolombardo functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT fernandocaro functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT florenthaudiquez functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT alaincngandjong functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT jiahuixu functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT hassanoularbi functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics
AT alejandroafranco functionaldatadrivenframeworkforfastforecastingofelectrodeslurryrheologysimulatedbymoleculardynamics