Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety

Wine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of...

Full description

Bibliographic Details
Main Authors: Magdalena Gajek, Aleksandra Pawlaczyk, Malgorzata I. Szynkowska-Jozwik
Format: Article
Language:English
Published: MDPI AG 2021-01-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/26/1/214
_version_ 1797542460324315136
author Magdalena Gajek
Aleksandra Pawlaczyk
Malgorzata I. Szynkowska-Jozwik
author_facet Magdalena Gajek
Aleksandra Pawlaczyk
Malgorzata I. Szynkowska-Jozwik
author_sort Magdalena Gajek
collection DOAJ
description Wine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of view. Nowadays, wine studies have also been undertaken in order to perform wine categorization and/or to verify the authenticity of products. The main objective of this research was to evaluate the influence of the chosen factors (type of wine, producer, origin) on the levels of 28 elements in 180 wine samples. The concentration of studied elements was determined by ICP-MS (Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Zn), ICP-OES (Ca, Fe, K, Mg, Ti), and CVAAS (Hg) techniques in 79 red, 75 white, and 26 rose wine samples. In general, red wines contained higher values of mean and median of B, Ba, Cr, Cu, Mn, Sr and Zn in contrast to other wine types (white and rose). In white wines (when compared to red and rose wines) higher levels of elements such as Ag, Be, Bi, Cd, Co, Li, K and Ti were determined. In contrast, rose wines were characterized by a higher concentration of Fe and U. The study also revealed that in the case of 18 samples, the maximum levels of some metals (Cd—8 samples, Pb—9 samples, Cu—1 sample) were slightly exceeded according to the OIV standards, while for Zn and Ti in any wine sample the measured concentrations of these metals were above the permissible levels. Thus, it can be stated that the studied wines contained, in general, lower levels of heavy metals, suggesting that they should have no effect on the safety of consumption. The results also showed higher pH level for red wines as a consequence of the second fermentation process which is typically carried out for this type of wine (malolactic fermentation). The highest median value of pH was reported for Merlot-based wines, while the lowest was for Riesling. It is assumed that dry Riesling has a higher content of tartaric and malic acid than dry Chardonnay grown in the same climate. From all of the studied countries, wines from Poland seemed to present one of the most characteristic elemental fingerprints since for many elements relatively low levels were recorded. Moreover, this study revealed that also wine samples from USA and Australia can be potentially discriminated from the rest of studied wines. For USA the most characteristic metal for positive identification of the country of origin seems to be uranium, whereases for Australia – strontium and manganese. Based on the highly reduced set of samples, it was not possible to differentiate the studied wine products according to the grape variety other than Syrah, and partially Chardonnay. Since all the Syrah-based samples originated from the same country (Australia) thus, the observed grouping should be more related with the country of origin than the grape variety.
first_indexed 2024-03-10T13:30:52Z
format Article
id doaj.art-4debd4fc897741d7aa83477b765cb443
institution Directory Open Access Journal
issn 1420-3049
language English
last_indexed 2024-03-10T13:30:52Z
publishDate 2021-01-01
publisher MDPI AG
record_format Article
series Molecules
spelling doaj.art-4debd4fc897741d7aa83477b765cb4432023-11-21T08:01:32ZengMDPI AGMolecules1420-30492021-01-0126121410.3390/molecules26010214Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape VarietyMagdalena Gajek0Aleksandra Pawlaczyk1Malgorzata I. Szynkowska-Jozwik2Faculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, PolandFaculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, PolandFaculty of Chemistry, Institute of General and Ecological Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, PolandWine is one of the most popular alcoholic beverages. Therefore, the control of the elemental composition is necessary throughout the entire production process from the grapes to the final product. The content of some elements in wine is very important from the organoleptic and nutritional points of view. Nowadays, wine studies have also been undertaken in order to perform wine categorization and/or to verify the authenticity of products. The main objective of this research was to evaluate the influence of the chosen factors (type of wine, producer, origin) on the levels of 28 elements in 180 wine samples. The concentration of studied elements was determined by ICP-MS (Ag, B, Ba, Be, Bi, Cd, Co, Cr, Cu, Li, Mn, Mo, Ni, Pb, Rb, Sb, Sn, Sr, Te, Tl, U, Zn), ICP-OES (Ca, Fe, K, Mg, Ti), and CVAAS (Hg) techniques in 79 red, 75 white, and 26 rose wine samples. In general, red wines contained higher values of mean and median of B, Ba, Cr, Cu, Mn, Sr and Zn in contrast to other wine types (white and rose). In white wines (when compared to red and rose wines) higher levels of elements such as Ag, Be, Bi, Cd, Co, Li, K and Ti were determined. In contrast, rose wines were characterized by a higher concentration of Fe and U. The study also revealed that in the case of 18 samples, the maximum levels of some metals (Cd—8 samples, Pb—9 samples, Cu—1 sample) were slightly exceeded according to the OIV standards, while for Zn and Ti in any wine sample the measured concentrations of these metals were above the permissible levels. Thus, it can be stated that the studied wines contained, in general, lower levels of heavy metals, suggesting that they should have no effect on the safety of consumption. The results also showed higher pH level for red wines as a consequence of the second fermentation process which is typically carried out for this type of wine (malolactic fermentation). The highest median value of pH was reported for Merlot-based wines, while the lowest was for Riesling. It is assumed that dry Riesling has a higher content of tartaric and malic acid than dry Chardonnay grown in the same climate. From all of the studied countries, wines from Poland seemed to present one of the most characteristic elemental fingerprints since for many elements relatively low levels were recorded. Moreover, this study revealed that also wine samples from USA and Australia can be potentially discriminated from the rest of studied wines. For USA the most characteristic metal for positive identification of the country of origin seems to be uranium, whereases for Australia – strontium and manganese. Based on the highly reduced set of samples, it was not possible to differentiate the studied wine products according to the grape variety other than Syrah, and partially Chardonnay. Since all the Syrah-based samples originated from the same country (Australia) thus, the observed grouping should be more related with the country of origin than the grape variety.https://www.mdpi.com/1420-3049/26/1/214wine samplesbeveragesmulti-elemental analysistrace elementsICP-MSICP-OES
spellingShingle Magdalena Gajek
Aleksandra Pawlaczyk
Malgorzata I. Szynkowska-Jozwik
Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety
Molecules
wine samples
beverages
multi-elemental analysis
trace elements
ICP-MS
ICP-OES
title Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety
title_full Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety
title_fullStr Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety
title_full_unstemmed Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety
title_short Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety
title_sort multi elemental analysis of wine samples in relation to their type origin and grape variety
topic wine samples
beverages
multi-elemental analysis
trace elements
ICP-MS
ICP-OES
url https://www.mdpi.com/1420-3049/26/1/214
work_keys_str_mv AT magdalenagajek multielementalanalysisofwinesamplesinrelationtotheirtypeoriginandgrapevariety
AT aleksandrapawlaczyk multielementalanalysisofwinesamplesinrelationtotheirtypeoriginandgrapevariety
AT malgorzataiszynkowskajozwik multielementalanalysisofwinesamplesinrelationtotheirtypeoriginandgrapevariety