Summary: | Abstract Background The ability of disaster response, preparedness, and mitigation efforts to assess the loss of physical accessibility to health facilities and to identify impacted populations is key in reducing the humanitarian consequences of disasters. Recent studies use either network- or raster-based approaches to measure accessibility in respect to travel time. Our analysis compares a raster- and a network- based approach that both build on open data with respect to their ability to assess the loss of accessibility due to a severe flood event. As our analysis uses open access data, the approach should be transferable to other flood-prone sites to support decision-makers in the preparation of disaster mitigation and preparedness plans. Methods Our study is based on the flood events following Cyclone Idai in Mozambique in 2019 and uses both raster- and network-based approaches to compare accessibility to health sites under normal conditions to the aftermath of the cyclone to assess the loss of accessibility. Part of the assessment is a modified centrality indicator, which identifies the specific use of the road network for the population to reach health facilities. Results Results for the raster- and the network-based approaches differed by about 300,000 inhabitants (~ 800,000 to ~ 500,000) losing accessibility to healthcare sites. The discrepancy was related to the incomplete mapping of road networks and affected the network-based approach to a higher degree. The modified centrality indicator allowed us to identify road segments that were most likely to suffer from flooding and to highlight potential backup roads in disaster settings. Conclusions The different results obtained between the raster- and network-based methods indicate the importance of data quality assessments in addition to accessibility assessments as well as the importance of fostering mapping campaigns in large parts of the Global South. Data quality is therefore a key parameter when deciding which method is best suited for local conditions. Another important aspect is the required spatial resolution of the results. Identification of critical segments of the road network provides essential information to prepare for potential disasters.
|