Aperiodic-Order-Induced Multimode Effects and Their Applications in Optoelectronic Devices

Unlike periodic and random structures, many aperiodic structures exhibit unique hierarchical natures. Aperiodic photonic micro/nanostructures usually support optical multimodes due to either the rich variety of unit cells or their hierarchical structure. Mainly based on our recent studies on this to...

Full description

Bibliographic Details
Main Authors: Hao Jing, Jie He, Ru-Wen Peng, Mu Wang
Format: Article
Language:English
Published: MDPI AG 2019-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/9/1120
Description
Summary:Unlike periodic and random structures, many aperiodic structures exhibit unique hierarchical natures. Aperiodic photonic micro/nanostructures usually support optical multimodes due to either the rich variety of unit cells or their hierarchical structure. Mainly based on our recent studies on this topic, here we review some developments of aperiodic-order-induced multimode effects and their applications in optoelectronic devices. It is shown that self-similarity or mirror symmetry in aperiodic micro/nanostructures can lead to optical or plasmonic multimodes in a series of one-dimensional/two-dimensional (1D/2D) photonic or plasmonic systems. These multimode effects have been employed to achieve optical filters for the wavelength division multiplex, open cavities for light−matter strong coupling, multiband waveguides for trapping “rainbow”, high-efficiency plasmonic solar cells, and transmission-enhanced plasmonic arrays, etc. We expect that these investigations will be beneficial to the development of integrated photonic and plasmonic devices for optical communication, energy harvesting, nanoantennas, and photonic chips.
ISSN:2073-8994