Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • Linear codes over a general in...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Linear codes over a general infinite family of rings and MacWilliams-type relations

Linear codes over a general infinite family of rings and MacWilliams-type relations

Bibliographic Details
Main Authors: Irwansyah, Djoko Suprijanto
Format: Article
Language:English
Published: Shahin Digital Publisher 2022-11-01
Series:Discrete Mathematics Letters
Subjects:
commutative frobenius rings
linear codes
complete weight enumeration
symmetrized weight enumeration
macwilliams-type relations
optimal codes
Online Access:https://www.dmlett.com/archive/v11/DML23_v11_pp53-60.pdf
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://www.dmlett.com/archive/v11/DML23_v11_pp53-60.pdf

Similar Items

  • Linear Codes Over a Non-Chain Ring and the MacWilliams Identities
    by: Tiantian Li, et al.
    Published: (2020-01-01)
  • Complete Weight Enumerators of a Class of Linear Codes From Weil Sums
    by: Shudi Yang
    Published: (2020-01-01)
  • Complete Weight Distributions and MacWilliams Identities for Asymmetric Quantum Codes
    by: Chuangqiang Hu, et al.
    Published: (2019-01-01)
  • MacWilliams Identities and Generator Matrices for Linear Codes over ℤ<sub><i>p</i><sup>4</sup></sub>[<i>u</i>]/(<i>u</i><sup>2</sup> − <i>p</i><sup>3</sup><i>β</i>, <i>pu</i>)
    by: Sami Alabiad, et al.
    Published: (2024-08-01)
  • Weight distributions for projective binary linear codes from Weil sums
    by: Shudi Yang, et al.
    Published: (2021-06-01)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs