Extractable Work from Correlations
Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work, we study how to use correlations among quantum systems to optimally store work. We analyze this question for isolated quantum ensembles, where the work can be naturally divided...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
American Physical Society
2015-10-01
|
Series: | Physical Review X |
Online Access: | http://doi.org/10.1103/PhysRevX.5.041011 |
_version_ | 1819026459265597440 |
---|---|
author | Martí Perarnau-Llobet Karen V. Hovhannisyan Marcus Huber Paul Skrzypczyk Nicolas Brunner Antonio Acín |
author_facet | Martí Perarnau-Llobet Karen V. Hovhannisyan Marcus Huber Paul Skrzypczyk Nicolas Brunner Antonio Acín |
author_sort | Martí Perarnau-Llobet |
collection | DOAJ |
description | Work and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work, we study how to use correlations among quantum systems to optimally store work. We analyze this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems that are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems. |
first_indexed | 2024-12-21T05:26:55Z |
format | Article |
id | doaj.art-4e18daf1fd3149c496bca3a05ce41bdc |
institution | Directory Open Access Journal |
issn | 2160-3308 |
language | English |
last_indexed | 2024-12-21T05:26:55Z |
publishDate | 2015-10-01 |
publisher | American Physical Society |
record_format | Article |
series | Physical Review X |
spelling | doaj.art-4e18daf1fd3149c496bca3a05ce41bdc2022-12-21T19:14:40ZengAmerican Physical SocietyPhysical Review X2160-33082015-10-015404101110.1103/PhysRevX.5.041011Extractable Work from CorrelationsMartí Perarnau-LlobetKaren V. HovhannisyanMarcus HuberPaul SkrzypczykNicolas BrunnerAntonio AcínWork and quantum correlations are two fundamental resources in thermodynamics and quantum information theory. In this work, we study how to use correlations among quantum systems to optimally store work. We analyze this question for isolated quantum ensembles, where the work can be naturally divided into two contributions: a local contribution from each system and a global contribution originating from correlations among systems. We focus on the latter and consider quantum systems that are locally thermal, thus from which any extractable work can only come from correlations. We compute the maximum extractable work for general entangled states, separable states, and states with fixed entropy. Our results show that while entanglement gives an advantage for small quantum ensembles, this gain vanishes for a large number of systems.http://doi.org/10.1103/PhysRevX.5.041011 |
spellingShingle | Martí Perarnau-Llobet Karen V. Hovhannisyan Marcus Huber Paul Skrzypczyk Nicolas Brunner Antonio Acín Extractable Work from Correlations Physical Review X |
title | Extractable Work from Correlations |
title_full | Extractable Work from Correlations |
title_fullStr | Extractable Work from Correlations |
title_full_unstemmed | Extractable Work from Correlations |
title_short | Extractable Work from Correlations |
title_sort | extractable work from correlations |
url | http://doi.org/10.1103/PhysRevX.5.041011 |
work_keys_str_mv | AT martiperarnaullobet extractableworkfromcorrelations AT karenvhovhannisyan extractableworkfromcorrelations AT marcushuber extractableworkfromcorrelations AT paulskrzypczyk extractableworkfromcorrelations AT nicolasbrunner extractableworkfromcorrelations AT antonioacin extractableworkfromcorrelations |