Effect of 2D spatial variability on slope reliability: A simplified FORM analysis

To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF (Hasofer–Lind–Rackwitz–Fiessler) iterative algorithm for first-order reliability method (FORM). It is simply formulated in x-space and requires neither transformation of correlated random varia...

Full description

Bibliographic Details
Main Authors: Jian Ji, Chunshun Zhang, Yufeng Gao, Jayantha Kodikara
Format: Article
Language:English
Published: Elsevier 2018-11-01
Series:Geoscience Frontiers
Online Access:http://www.sciencedirect.com/science/article/pii/S1674987117301378
Description
Summary:To meet the high demand for reliability based design of slopes, we present in this paper a simplified HLRF (Hasofer–Lind–Rackwitz–Fiessler) iterative algorithm for first-order reliability method (FORM). It is simply formulated in x-space and requires neither transformation of correlated random variables nor optimization tools. The solution can be easily improved by iteratively adjusting the step length. The algorithm is particularly useful to practicing engineers for geotechnical reliability analysis where standalone (deterministic) numerical packages are used. Based on the proposed algorithm and through direct perturbation analysis of random variables, we conducted a case study of earth slope reliability with complete consideration of soil uncertainty and spatial variability. Keywords: Slope stability, Spatial variability, Random field model, Probability of failure, HLRF algorithm, First-order reliability method (FORM)
ISSN:1674-9871